
Formal Report

Deep-Learning Classifier Robustness in
Neutrino Experiments

Theoretical Physics BSc Project

University College London

Student
I.J.S. Shokar - 17066988

Supervisor
Dr. C Backhouse

April 2020

Declaration of Own Work

I confirm that all this work is my own except where indicated, and that I have:

• Clearly referenced/listed all sources as appropriate;

• Referenced and put in inverted commas all quoted text (from books, web, etc);

• Given the sources of all pictures, data etc. that are not my own;

• Not made any use of the report(s) or essay(s) of any other student(s) either past or present;

• Not sought or used the help of any external professional agencies for the work;

• Complied with any other plagiarism criteria specified in the Course handbook;

• I understand that any false claim for this work will be penalised in accordance with the
University regulations.

Ira Shokar

2

Abstract

The project being undertaken is looking at using Convolutional Neural Networks (CNNs)
to classify neutrino interaction types from the NOνA experiment and attempting to
ensure robustness of the classification algorithms to be able to generalise to incoming
data by introducing the addition of a Domain Adversarial Neural Network (DANN).
This project also looks to explore the differences between the GENIE and GiBUU event
generators that are used to train the networks, and how these differences may cause
bias in the classification of events.

3

Contents

1 Introduction 5
1.1 Neutrino Research . 5
1.2 NOvA Experiment . 6
1.3 Machine Learning . 8
1.4 Convolutional Neural Networks . 10
1.5 Robustness . 11
1.6 Domain Adversarial Neural Networks . 12

2 Method 14
2.1 Software . 14
2.2 Training data . 14
2.3 Models . 16
2.4 Generator Method . 17
2.5 Hyperarameters . 19
2.6 Data Imbalance . 19
2.7 Computational Expense . 20
2.8 Discriminator Network . 21
2.9 Domain Adversarial Training . 22

3 Results 24
3.1 Model Classification . 24

3.1.1 Training on GENIE Dataset . 24
3.1.2 Training on a balanced GENIE Dataset . 26
3.1.3 Training on a balanced GENIE Dataset and evaluated on GiBUU Data . . . 30
3.1.4 Training on both GENIE and GiBUU Data 33
3.1.5 Network Interpretability . 36

3.2 Domain Classification . 40
3.3 Domain Adversarial Training . 43

4 Conclusions 48
4.1 Model Classification . 48
4.2 Future Work . 49

5 Bibliography 50

6 Appendices - Source Code 52

4

Chapter 1

Introduction

1.1 Neutrino Research

Neutrinos are the most abundant non-massless particle [1], yet due to their nature very little is known
about them. Neutrinos are charge neutral particles and only interact through the weak interaction
(and the force of gravity), meaning detecting them is extremely difficult [2]. Every second, a large
number of neutrinos pass through the earth and through people in the form of solar neutrinos and
high energy cosmic rays [3].

To isolate the detectors from other background radiation many experiments and detectors are placed
deep underground. Many cosmic neutrinos penetrate through the ground and to the detectors,
however they are able to be accounted for and excluded from the analysis. There are a number
of underground neutrino experiments, notably MINERνA [4], IceCube, [5], Super-Kamiokande [6]
and Dune [7], however the experiment that this project is working on is the NOvA experiment at
Fermilab [8].

It was observed that only two thirds of atmospheric neutrinos that were expected reached earth,
which led to the observation that neutrinos have a mass and the ability to oscillate between the
different flavours [9]. This explained how the neutrinos expected to be observed changed to a different
flavour, a discovery that was awarded the 2015 Nobel prize, however, the exact masses of the the
flavours as well as the precise values of the oscillation parameters are still unknown [10]. The three
neutrino flavours, each named due to the associated lepton that is produced or absorbed with the
neutrino, do not correlate to the mass eigenstates, but are a superposition of them, where |να〉 is a
neutrino with flavour α = e, µ, τ for electron, muon and tau, and |νi〉 a neutrino with definite mass
mi for i = 1, 2, 3, where U is the PMNS matrix [11].

|να〉 =
∑
i

U∗
αi |νi〉

Neutrinos interact with other particles in their flavour eigenstates, but travel as mass eigenstates. As
a neutrino travels, the quantum mechanical phases of the mass eigenstates advance at different rates

5

Figure 1. Three of the event topologies, for charged-current muon and electron neutrinos as well as
a charged-neutral interaction, with their associated Feynman diagrams [14].

due to mass differences, which results in a changing superposition of mass eigenstates corresponding
to a different flavour. This violated the Standard Model which predicted neutrinos as massless,
requiring exploration beyond the Standard Model which could produce new unknown properties of
fundamental particles [12].

1.2 NOvA Experiment

To measure these oscillations, neutrino energy and flavours need to be reconstructed; as neutrinos
are invariant to charge and magnetic fields they travel without deflection they indicate their sources
of production, this means they can easily be traced back to an inception vertex, examples of these
images are shown in Figure 1. If the flavour can be determined, which is the case for charged-current
interactions (CC) from the associated lepton that is produced. The two charged current neutrino
variants that are observed are νµ and νe events, as the lifetime of the ντ is short, and not visible to
the detector [8].

The dominant CC interactions are: quasi-elastic - where the nucleon recoils from the scattering
lepton; resonant - where the nucleon is deflected into baryonic resonance; deep-inelastic-scattering -
where the nucleon breaks up in the process of hadronisation, and meson exchange currents - where
two-nucleon emission takes place [8].

Neutral-current (NC) interactions don’t indicate an associated lepton, as they are observed though
the interacting hadron, with the outgoing lepton being a neutrino - which goes on undetected- thus
their flavour cannot be determined.

At NOvA a near detector, placed 1 km from the beam source, and a far detector, 810 km away, are
used to determine the flavour of neutrino passing at each, and any changes to the neutrinos over the

6

Figure 2. Schematic of the NOνA scintilator detectors. The diagram on the left shows the 3D
representation of the detector, while the diagrams on the right show the top view and side view planes

where cell activation in each row or column indicate the tracks of the particles [8].

distance can be compared. By comparing the number of neutrinos of each flavour at the detectors,
oscillation calculations can be made.

The detectors are a pair of finely grained liquid scintillator detectors. The near detector is 4m x 4m
x 15m in size, with cells filled with liquid scintillator. Fibre optic cables collect the scintillation light
to be stored.

The scintilator cells are arranged into planes, which are configured into horizontal and vertical
alignments to provide separate, interleaved X-Z, and Y-Z views. The data therefore is displayed as
the top view and side view of the detector, and these are what are used as inputs to the classification
algorithm, see Figure 2 for a schematic of the detector and the output views.

A NuMI (Neutrinos at the Main Injector) beam, made of muon neutrinos is produced by firing
protons into a graphine target, which produces pions amongst other particles. These pions are able
to be directed by magnets in an intended direction of travel , before the pions decay into Muons and
muon neutrinos. [13]

Traditionally classification required reconstructing high-level components associated with particle
interactions such as clusters, tracks, showers, jets, and rings and summing the directions, and shapes
of these objects, [8]. However, the method now implemented at NOvA is a machine learning algorithm,
where the model learns how to classify the interaction type from examples, a process known as
supervised learning. Currently a CNN is being used, which has been found to be capable of pattern
detection and particularly effective at image classification with real world photographs.

The network will look to classify the events based on features from the event topologies. νµ events
are indicated by a long, low dE/dx (energy loss per unit distance) track which is that of a minimally
ionizing µ, while νe events display a shower rather than a track . NC events can display both νµ and

7

νe interaction like features- if the interaction produces pions. A charged pion track appears similar
to that of a muon, except for an energy deposition spike at the end of the tracks; while the lifetime
of a neutral pion is short, and it decays to produce electromagnetic shower, with the gap between
the event vertex and shower the distinguishing factor from a νe event [8].

These similarities make the challenge of classification difficult, even for state of the art computer
vision networks, however the performance compared to traditional reconstruction analysis showed
positive results for these methods. NOvA’s classifier, which at the time, was based on the GoogLeNet
algorithm, that achieved an error rate of only 6.7% on images [15], it now also uses the MobileNet
algorthym that we will be using in this study, however they are yet to publish results of its performance.
The network at NOvA outperforms the previous track-based modestly with a measurement-optimised
efficiency of 58% over the of 57% from [16] for νµ CC interactions and for νe CC interactions 49%
over the 35% when compared to results from [17].

In order to both learn how to classify as well as to validate the predictions against the actual
classifications, the algorithms require labeled classification data as well as the event images. Data
from the detector will not be labeled, thus simulated Monte Carlo event generators will provide the
training examples; the two simulators that will be used are GENIE [19] and GiBUU [21] however there
are many different models that all simulate events uniquely. The GENIE Monte Carlo Simulation
simulations the initial iteration of a neutrino with nuclei in the detector and the resulting scattered
products to the surface of the nucleus [20]. It mainly reproduces neutrino-nucleon scattering data but
limited neutrino-nucleus scattering data means there are deficiencies in the primary physics model [4].
While the GiBUU simulation based on the Giessen–Boltzmann–Uehling– Uhlenbeck model which is
a semiclassical transport model which describes the evolution of a many-body system in the presence
of potentials and a collision term, with the addition of neutrino-induced interactions.

1.3 Machine Learning

Artificial Neural networks (ANNs) [18] are not a new phenomenon, however the recent increase in
their popularity has come about due to the advances in hardware that allows the computationally
expensive training of networks, which led to improvements in architectures and training processes.
Neural networks increase in performance when given more data to learn from, and the volumes of
data that are produced in this digital age has led to increased research into the development of theses
algorithms.

In a traditional Feed Forward Neural Network (FFNN), the most basic ANN, each neuron in each
layer the output will be a weighted sum of the inputs from every neutron in the preceding layer, with
this sum being passed to an activation function, which brings non-linearity allowing the modelling of
more complex patterns [22]. The output, yk, for the kth neuron in a layer where i = 1, 2, ..., n where
n is the number of neutrons in the previous layer, and xi their corresponding outputs, with w, the
weights, b, the bias, and σ the activation function.

8

Figure 3. A graph of a simple FFNN with two hidden layers, that takes in 3 inputs that either
classifies into one of two categories or produces two values depending on if the model is completing a

classification or regression task. [22]

yk = σ(
∑
i

wkixi + b)

The algorithm becomes connected network of these weighted sums, where the parameter weights,
which are initially random, are learned by giving examples. The network will determine which
patterns, or features, correspond to which event, and the algorithm tunes the weights values to
produce the desired output through backpropagation.

The metric used to determine how effective the model is at the task is the loss function, which is
measure of the error between the predicted output and the truth label. For a simple regression task
this could be calculated using the mean absolute error or the mean squared error. In the case of
particle identification, the problem is one of classification, and the loss function often takes the form
of a cross-entropy function, which can be calculated by:

L(y, ŷ) = −
∑
i

yilog(ŷi)

where y is the prediction, and ŷ is the truth value, over the entire dataset. Here the functions
compares the distribution of predictions to the one-hot-encoded true distribution, and the closer the
the confidence of that class is to 1, the smaller the loss value.

The network looks to minimise the loss by updating the weights and biases of the network with each
training step, a process that will fit the network to the data. In order to determine if the loss function
is at a minimum, a method of gradient descent is used. The gradient of the loss function is calculated,
and the is scaled by a learning rate. A large learning rate will mean that large steps are made, which
will reduce the training time, but the optimisation may skip over the minima, while a small learning
rate will take longer to converge, but will find the optimal value. Both these methods are subject to

9

finding local minima, rather than the global minima, so stochastic optimiser algorithms are often
used to allow for escaping minima, and over time should converge on the correct value. Optimisers
often couple these gradient calculations with variable learning rates, that start of large to allow the
algorithm to search the surface, and then reduce in size to allow convergence to take place.

In order to prevent the network from continually converging on sub-optimal values, the initial weights
are randomly determined. This means that each training process is unique, and the final model
will be an ensemble of the models that are produced during each epoch- each pass over the training
dataset. The neural networks have a large number of paramaters in order to be able to fit to complex
input features, however the model may become too reliant on a small number of weights- which leads
to overfitting to the training data, and struggling to generalise to new data. This is an area that will
be discussed throughout this report.

1.4 Convolutional Neural Networks

In the field of computer vision, the most successful algorithms for pattern detection of images have
proved to be Convolutional Neural Networks (CNN). These are ANNs that have been designed to
space invariant, which makes them suited to processing images.
Much like a traditional FFNN, CNNs take in an input, have a number of hidden layers, and return
an output; but work differently in that rather than every neuron being connected to each input value,
a kernel, a small matrix, is passed over the image, pixel by pixel. This is due to the size of the input
which can be several million pixels, where the process would become too computationally expensive
to have fully connected layers. This kernel will apply a convolution function, using the pixel and the
surrounding pixels as inputs to produce a weighted sum, see Figure 4, which it will produce another
image from, with these convolutions detecting local structures [5] such as edges or other patterns,
building several feature maps and through training determining which combinations of these are most
important to producing the correct output class, see Figure 5. Each layer passes multiple kernels
over the same input, to produce a number of output matrices, all applying a different convolution,
to form a tensor as the output. (In this way, convolutional layers [29] produce many alternative
representations of the input image, each serving to extract some feature which is learned from the
training sample.

In order for the network to be able to complete the process in a reasonable amount of time, each
convolution layer is followed by a pooling layer, which reduces the size of output feature map by
partitioning each matrix into subsections, where either the maximum value of the set (max pooling)
or the average of the values (average pooling) is taken, reducing the number of parameters for each
subsection to a single value. With these steps of convolutions and pools making up the majority of
the layers in the network, producing a final vector, that feeds into a traditional FFNN to produce
scores for the confidence level for each label it thinks it may be classifying. It is this output value
that cuts are taken on when analysing data, using the simulation results where the score from the
network is over a threshold value.

10

Figure 4. Diagram of a Convolutional Kernel acting on a source matrix. The kernel is placed over
a sub grid of the matrix, and the output value is determined by the product of the values in the input

grid and the values in the kernel. The kernel then slides across the entire source matrix. [5].

Figure 5. Architecture of a basic CNN, displaying the hidden convolution and pooling layers.

1.5 Robustness

A large problem that faces neural networks is the problem of overfitting. This is whereby the model
becomes very good at picking up details from the dataset and essentially learns the dataset so much
so that it struggles to then generalise on new data. In a CNN as there are fewer free parameters than
with a fully connected network then the chance of overfitting is reduced [5] and methods such as
Dropout, which is zeroing random neurons in training so that that the network doesn’t rely on a small
number of neurons, can help reduce this. Over a large number of training epochs, the final network
will be ensemble of smaller networks. However, they are still subject to becoming too specialised to
the data they have been trained on, and the CNN being used to identify particle events, the model
will be trained on the Monte Carlo simulations, neither of which perfectly model real events. This
means that the model is susceptible to learning on these unrealistic data sets and becomes inaccurate
when fitting for real data.

As the two simulations, GibUU differ on how they simulate different interactions, a part of the

11

project was looking at how the models classify events from the two detectors. The robustness of
the classifier will be determined by its ability to not show a domain-bias from the generators it was
trained on, with the simulations based on models that are not identical to nature.[4] and that the
model is able to generalise to incoming detector data. A classifier that is trained to pick up on small
details in a dataset, that may be considered noise, will perform poorly on new data that is used in
inference, especially if that data is from a different production source, such as a different generator
or real detector data. By then poorly classifying incoming data, the experiment loses it’s ability to
make accurate measurements and identification of the neutrino flavours that are passing through the
detector, and as a result loses the ability for accurate oscillation calculations to be made that look at
the proportion of neutrinos that change flavour.

Many see machine learning algorithms, and in particular deep learning architectures, as black boxes
because it is extremely difficult to interpret why they make the decisions they do. As discussed
earlier, the feed forward networks, after training, are a linear combination of the outputs from the
nodes in the previous layer, passed through an activation function. Even by looking at the values
of these weights and biases, one cannot understand how these values were chosen, and often they
are not unique, as training an identical model with identical data will yield a different network,
that may produce the same classification output, but have a different set of weights. This is due
to the stochastic processes that underpin how the networks are trained, in both the initial weights
values before training, and the stochastic processes that determine the loss function backpropagation
gradients through the optimiser algorithms such as Adam or Stochastic Gradient Descent [25] .

When trying to interpret CNNs the feature maps range from high level features such as edges, to
lower more abstract features that would be very difficult for a human to infer meaning from. Research
is being undertaken to try and understand these black box algorithms such as [26] which looks at
returning a filter over the input image that indicates which parts of the image were the strongest
indicators to the network as to why the classification was made.

In the case of the particle physics events, the images represent the particle tracks and as a result do
not contain as many features themselves as a picture of a object will making the training process for
the network more difficult, and the features that the model uses to classify the image potentially
more abstract.

This problem of interpretability posses a large problem with machine learning algorithms, not because
of how they perform, but of whether they can be trusted to make decisions on the part of human
experts, whether this being screening for cancers, determining how an autonomous car should act in
a critical scenario, or determining whether to approve a mortgage. As a result, it is important that
methods are developed to produce understand why these algorithms come to the decisions they do.

1.6 Domain Adversarial Neural Networks

An alternative network architecture that will be explored in this project is that of a DANN, which
will be joined to the CNN classifier in order to reduce the domain dependence of the model [27]. Two

12

sources of data, or domains, are introduced, a source domain where labels are available but not used
so that the input is similar to unlabelled data from the target domain where labels are not available.
The network produces two classified outputs, a features classifier, which predicts class labels in a way
similar to a normal ANN, but also a domain classifier that discriminates between the source and
target domains- determining which inputs are from simulations or detector data [24] or in the case of
this project determining the inputs from the two different generators, as a proof of concept that in
the future these techniques could improve the classification of detector data.

DANNs can also be applied to compare multiple simulation only datasets [4], such as GENIE and
GiBUU, to determine whether the network can tell which raw images belong to which. To have
a robust model the network will need be invariant to the differences between these, as well as
between the simulations and real data. Only data from the source domain is used to determine the
parameters for the features classifier, with data from both domains determining those of the domain
discriminator. By optimising for accuracy on the features classifier and maximising the error for
the domain discriminator the classifier is trained to only use features in both domains. When an
equilibrium is reached the domain discriminator is only able to distinguish samples from the sources
by chance [28]. Figure 5 shows this additional part of the network, which in theory should produce a
network trained to be invariant to the differences in the simulations as well as with real data, and
results from [4] at MINERvA showed a small increase in accuracy at 96% to 94.5% for the domain
trained networks.

Figure 6. Plot of the architecture of a DANN joined to a network, where y is the outputs from the
feature classifier and d the outputs of the domain classifier. The gradients show the error, or loss,

functions that back-propogate to determine the weights and biases. [24]

13

Chapter 2

Method

2.1 Software

The initial part of the project involved becoming familiar with the various technologies that are being
used to analyse the data at NOνA. The data and software used to analyse the data are stored on the
High Energy Physics group’s Linux cluster of machines, running both Scientific Linux, meaning that
it was essential understand the Linux command line in order to navigate the file system and software
packages, as well as run and debug scripts.

NOνASoft is a software package, developed by Fermilab, that builds on the ROOT data analysis
software [29], developed by CERN. CAFAna is the framework that NOνASoft uses to run functions
and produce plots by specifying cuts on the data. The analysis framework is written in C++, a
language I had no prior experience of, so a proportion of the time was spent trying to interpret
pre-existing C++ scripts in NOνASoft, as well as the doxygen documentation.

2.2 Training data

The MC data is stored as ROOT files, as well as HDF5 files that contain the training data. The
image data comes in the form of an array and the interaction targets in the form of a ‘pdg’ (particle
data group) value. The event labels are stored as part of ‘mc’ branch of the HDF5 file, while the
input images are stored in a ‘training’ branch.

The data stored in these HDF5 files has already undergone preselection cuts- this was indicated by
the fact that the number of subevents stored in the ‘mc’ branch is larger than that of the ‘training’
branch. Because of this, the events could not simply be matched up based on their index value, but
on the following values: ‘run’, ‘subrun’, ‘evt’ (event), ‘subevt’ (sub event) and ‘cycle’ to indicate
which subevent is being referenced.

After reshaping the image maps from a 1D array to two 100 x 80 pixel images representing the z-x
and z-y planes of the detector (see Figure 7 for plots of an event in the two detector planes), the
images were written to a 4D tensor with dimensions:

14

Figure 7. Plot showing an event from the two planes of the detector (z-x and z-y) .

• event index (determined by the order that the images were added),
• plane (z-x or z-y),
• z value,
• x or y value.

The HDF5 files also store data about each event, and this was used to apply the basic quality and
preselection cuts. The cuts were outlined in the NOνA doxygen with the νµ cuts as to remove
any events that could be considered background events. These could be, for example atmospheric
neutrinos, as well as neutrinos produced on earth, or from another process, and would be removed by
the Cosmic Rejection cuts and the preselection cuts, as well as basic quality cuts.

Much like the the code already for the NOνA project and NOνAsoft, these are written in C++
and use the branch like structure of the ROOT files. A package has been developed for Python,
called Pandana, however, I am unfamiliar with the syntax associated with the package and the
documentation seems to focus on network analysis, so I deemed it a simpler option to simply
implement the cuts using if statements with a loop over all the events.

15

While this meant that the computational process is much slower, I didn’t see that as a problem as
the cuts need only be applied once, for each generator, and the events that pass can be stored and
then used as model inputs from then onward. In order to verify that the cuts that I had made were
correct, a function had been written in NOνASoft, ‘MakeEventListFile’, that listed the events that
pass a specific cut, in order to be able to cross reference with the results I obtained.

It may be useful to learn and then implement the Pandana approach if more training data needs to
be used in the future, or if the network was to be trained dynamically in the future.

While Keras does have a C++ API, as well as the option to export a model from Python, as Python
is the language I am more comfortable with I decided that it was worthwhile interpreting the cuts
and implementing them in Python rather than using the pre-existing C++ functions.

2.3 Models

The data that passed the preselection cuts, now in the form of image maps and labels indicating
the interaction type, were now able to be passed to a model for training. Initially this was done
on a smaller scale, using just 10 of the available 1150 files in order to ensure that all components
were working properly. The interaction labels are one hot encoded into three classes: neutral current
(NC), charged current (CC) νe (and νe) , CC νµ (and νµ) as the classifier makes predictions for if an
event belongs to each class.

Initially I produced a small network containing 6 sequential blocks containing convolution, max
pooling and drop out layers in Keras. I did this to understand whether there were any errors in the
formatting of the data as I was familiar with what was required for my rudimentary model. This
worked with no hiccups, although the classifier was not particularly accurate.

The next stage was to run the small dataset using the MobileNet [23] architecture, developed by
Google. MobileNet is designed for implementation on mobile devices with a reduced computing
power and thus reduced the training time significantly. As the computational facilities at the HEP
Linux cluster I was using for the project do not have GPU cores to train the models, this more
memory and processor efficient network made training more efficient that even my simple sequential
network, despite being a more complex and having a much larger number of trainable parameters.

Literature stated that MobileNet does experience a reduction in classification performance [29],
however the increase in performance time is significant and more valuable to a project with a limited
timeframe, which is looking to see if new methods can be implemented, as opposed to producing a
final production model.

The MobileNet architecture, officially known as MobileNetV2, uses ’depthwise separable convolutions’,
’linear bottlenecks’ and ’inverted residuals’ to improve the training time and memory efficiency. [23].
MobileNet applies 3 x 3 depthwise separable convolutions that replace conventional convolutions, by
first applying a single convolutional filter before a 1x1 convolution builds new feature maps through
linear combinations of the inputs. Linear bottlenecks project, or embed, the feature maps to a

16

lower-dimensional spaces, and it is this projection that leads to the loss in information, but reduced
training time. Rather than use a non-linear activation function such as ReLU, a linear one is used
instead to prevent a loss of information during the transform. The inverted residuals act as feature
map expansions from the low-dimensional space.

In this project the MobileNet architecture was altered to take in two images per event, for the two
planes of the detector, and process these in parallel before concatenated them together before rest of
the network processed the inputs.

The network produces probabilities for each category indicating the confidence level that the network
has in belonging to each label class. By taking the category that the model is most confident of we
can compare this to the MC truth data we obtain the accuracy values, and the loss values that the
loss values that the training process uses to indicate the success of the training.

2.4 Generator Method

While it was possible to write the required data to an array when working with a relatively small
dataset, this was not possible when using all of the available files in the directory- 1150 GENIE
HDF5 files, each with approximately 8370 events, totalling 9625500 events in total. As a result I
decided to produce a data frame for the events that passed the cuts, storing the following data about
the event, but not the image map itself. The columns of the dataframe were as follows:
• ‘run’ ,
• ‘subrun’,
• ‘evt’ (event),
• ‘subevt’ (sub event),
• ‘cycle’,
• ‘train_index’: location index within the ‘training branch’ of the image,
• ‘label’ : pdg interaction value,
• ‘file’: path to the relevant HDF5 file.

The data frames were then concatenated to produce three: one for training containing 335,456
sub events, one for training validation containing 67,092 sub events, and one for testing the model
containing 93,248 sub events.

As the data was not stored locally, the data could not be loaded into the model all at once. Keras
allows for a generator to load the data to the model in various batch sizes. This sources the image
data from the relevant HDF5 file using the location stored in the ‘file’ column of the data frame and
the ’train_index’ value from that row to identify the array in question. This is then reshaped the
same way as before and written to a 4D tensor identical to the one for the entire dataset, with the
only difference being the event index dimension is the size of the batch size that is specified, rather
than the entire dataset. The default batch size is 32, as is the case with the results produced by
NOνA[8]. The target values are again one-hot encoded based on the ‘label’ value for the row.

17

The GiBUU events are similar to the genie events in the way that the data is stored in the HDF5
files, so an identical approach could be used to preselect data and store the corresponding data
regarding the events in a dataframe, that also contained the location of the training images, as was
with the GENIE events. The GiBUU events have an additional property, being that each event is
given a weight value. These weight values were contained in the HDF5 files, however they were
incorrect- with values ranging from the order of 10-3 to 104. A NOνASoft function had been written
to correct this, but as I was not using the ROOT files, but the HDF5 files I could not directly apply
the function to the values in the HDF5 files. As well as this the function relied on a large number of
C++ dependency files that made it an unreasonable task to try and replicate the function in Python,
as had been done with the preselection cuts.

Once again the ‘MakeEventListFile’ function could be used to create a text file with the associated
weight value for each event. Then a mapping function could be used to add the weight value to the
correspoding event.

In the training process the weight was used to provide a the weighing that each particular event
should have on the overall statistics of the dataset. In our case that indicated the importance of the
event to the training process. I was unable to find a method in Keras that allowed for a weighted
training procedure, that being one where the magnitudes of the gradients calculated for the gradient
descent backpropagation process were scaled in accordance with the GiBUU weights. This gradient
scaling was used when training the DANN as will be discussed later, however every event was scaled
by a constant value in that case, rather than changing for every event here. The tensor batch
preprossessing in the MobileNet architecture applies a ’Subnet’ process to the batch that meant
that I could not ensure that the associated weight would correspond correctly when calculating the
gradients for each event without extensive testing that I did not think could be completed within the
timeframe of the project.

Alternatively, the weight was used as a value that indicated the likelihood that the event would be
included in the training procedure. A random number was generated between 1 and 10, which was
the range in which almost all of the weights values were contained, with the exception of a few that
were greater in value. If the weight value of an event that had passed the preselection cuts was
greater than the random generated value the event data was written to the dataframe. If it was
lower it was passed and the next event was evaluated in the same way.As the GENIE events did not
contain this weight value, all the GENIE events that passed the preselection cuts were written to the
train, validate and test dataframes.

This process did mean that a large proportion of the GiBUU events were not used in the training
process, however this was not as large of a problem, as the number of GiBUU events given far
exceeded the number of GENIE events available, and as will be discussed in the imbalanced dataset
section, as we as the computational expense section, I would not have been reasonable to train the
model using all of these events anyway.

Once these dataframes had been produced, a generator function could load in the data to the models
for training.

18

2.5 Hyperarameters

A neural network is defined by a number of hyperparamters, which are parameters that are defined
in order to build the model and include the number of hidden layers, the number of nodes in dense
layers, the learning rate, the optimiser as some examples.

The majority of these values are predefined by the MobileNet network architecture, and thus were
remained unchanged when training and testing (but were altered when the network was stripped
back for debugging purposes), these include the network architecture regarding the depth and width
of the network, the activation functions- which are the non-linear functions that are applied as the
output of a node, the reguliser- which applied penalties to layer operations to avoid exploding, or
vanishing of gradients, and the dropout values- which are the percentage of nodes that are zeroed
during that training epoch to avoid overfitting.

The hyperparamters that were experimented with were the batch size of the network- which is the
number of samples that are processed at one time when calculating the backpropogation gradients,
the learning rate- which is a value that determines how much the weights are adjusted when learning
(this can be variable), the optimiser - the algorithm that looks to reduce the loss function by finding
the global minimal- as there are too many unknowns to calculate the optimal network, the problem
becomes one of a optimisation problem, and the loss function- the calculation of how the classifier
performs against the truth value by looking at the residual between these.

For each hyperparameter, there were a number of options to try and determine the optimal combina-
tions.For the optimiser the two options used were the ADAM optimiser [25], and Stochastic Gradient
Descent [31]. Adam uses an adaptive learning rate and takes advantage of momentum by using
moving average of the gradient instead of gradient itself like SGD with momentum. SGD replaces
the actual gradient (calculated from the entire data set) by an estimate (calculated from a randomly
selected subset of the data). The Adam optimiser proved more effective, and was used throughout.

For the loss function, as this is a classification task, the most sensible option was to use a categorical
cross entropy, as opposed to a mean squared error used in regression, or spare categorical cross
entropy, which is used when the labels are given as an integer, rather than a vector. The reason that
the labels were one-hot encoded rather than input into the model as integers is because the model
then does not assume anything about a larger integer label having some sort of greater value, or that
class 1 is closer in nature to class 2 than class 3, for example.

2.6 Data Imbalance

By the nature of the production mechanism in which the νe are produced in the beam, at the
near detector the number of νe events in comparison to the number of NC events and νµ events is
incredibly small (1 νe event for each 19 νµ events).

While providing data with these proportions to the model will give the model an accurate description
of the nature of events that are detected by the near detector, the model will naively weight the νµ

19

events are more important due to their abundance, and completely disregard the νe events, and to a
lesser extent the NC events.

By simply predicting every event to be that of a muon neutrino, the model would obtain an accuracy
of 65% however the classifier would be completely useless in identifying a νe. In order to prevent this
from taking place, as well training the model to develop a better understanding of the indicators
that a NC or νµ event had taken place, a balanced data set was provided to the network.

This was completed by altering the generator function to accept events based on a number of criteria,
and to reject some- that is, not passing them onto the model for training in that instance. The
generator would produce a series of random values, and if each value was above a threshold value
then the event would be passes onto the model. The thresholds were set for whether the event was a
muon neutrino event, a charge neutral event and if the event is a GiBUU generated event using the
weighting associated with that event.

By preselecting the events in such a way, much like the preselection cuts, the number of trainable
events was again reduced by 93%. Machine learning algorithms require large amounts of data to
be able to determine the weights, especially deep learning models. The MobileNet model contains
394,548 trainable parameters and these methods that do not utilise all the available data significantly
reduces the model’s ability to set each weight and bias optimally due to the volume of training data
Even before trying to balance the data the number of GENIE training samples was 335,456 meaning
that the model does not have enough boundary conditions to determine the parameter weights values.
After balancing the dataset the number of events in the GENIE dataset was 52,735. The trade off
in the number of datapoints used in order balance the dataset was a necessary one, as the network
performed much more successfully after doing so

2.7 Computational Expense

Despite reducing the model training size significantly, this process of preselecting the events to
balance the data set was very computationally expensive, with it being an if else statement that is
tested on every event in the data set. Training the model in this was decreased the time required to
train the model, with the MobileNet training process being very efficient, and often having to wait
for the next batch to be processed by the preselection generator.

In order to overcome this the generator was used to instead produce three new data frames, (one
each for training, validation and testing) that stored the data of the events that had passed the
selection cut. The dataframe used for training again contained 70% of the data that would be passed
to the model, with the validation set containing 10% and the testing dataset 20%. These data frames
did not have be generated again, and could be used as the inputs for future training.

These dataframes were produced prior to the training process, and during the training process a
generator was again used to feed the data to the network, this time running much more quickly as
there was no selection process- all the data from the dataframes was used for training.

20

While the training process time was significantly reduced by preselecting prior to training, the
training time of the models was still not fast, with an average epoch taking 9838s (taken from the
mean epoch training time over 100 epochs for a classifier network trained using the Adam optimiser,
and a batch size of 32). This over the 100 epochs resulted in a network training time of 237 hours.

100 epochs was often chosen as a compromise between the training time and classifcation accuracy,
as that the machines in the HEP cluster do have multiple cores meaning that a number of networks
could be trained simultaneously, but the lack of GPU meant that each training process took a
significant amount of time. At Noνa, ’the training of the network was carried out on a pair of
NVIDIA Tesla K40over a full week of GPU hours’ [8], a resource simply not available for this project.
Training beyond 100 may have improved accuracy of the models, however this would have been only
marginally as the gradients of the training accuracy, for example in Figure 34, were tending to 0..

Not all models were trained for 100 epochs and this was because of the callback functions that can
be implemented in Keras. These are conditional functions that will end the training process if the
model is seen to not be improving after specifying a patience period (5 epochs was used) in case
the model accuracy and loss improvements only halted temporarily use to statistical fluctuations,
and not as a result of over training. By stopping the training then the problem of over training is
avoided, where the model again overfits to the data.

2.8 Discriminator Network

In order to understand if a domain adversarial training approach would be effective it was important to
first look at if the MobileNet model can discriminate between the images produced by the GENIE and
GibUU generators. As the DANN comprises of the MobileNet classification architecture, appended
by a domain classifier (and the negative gradient back propagation), in order to understand whether
the network can tell from the images whether the event was produced one of the simulations or the
other, we can use the same MobileNet architecture, but feed the model labels that indicate which
generator produced the image, rather than the interaction event type classification label. Nothing
else about the network changed from the network architecture used for classification other than the
labels, and the size of the final dense layer which now consisted of 3 neurons rather than 2.

If the network is able to accurately discriminate between images produced by either generator then
it confirms that there are significant differences between the data from the two domains. Whether
these differences affect the way that the model classifies would still require further investigation.

If the model could not discern between the two data sources then a DANN would have no affect in
aiding the training process, as the discriminator function within the DANN changes the backpropa-
gation so that network cannot distinguish between the two sources, however we would already be at
that state if the network wasn’t able to classify domains correctly.

21

Figure 8. A diagram showing the added layers to the MobileNet architecture that change the CNN
to a DANN CNN, with a gradiant reversal layer for the domain discriminator classifier.

2.9 Domain Adversarial Training

In order to understand how the model learns when faced with data from the two different generators,
we trained the model using inputs from both generator sources to train, validate and test the models.
This, both gave the model a larger number of samples in which to learn from, but also gave the
model inputs that differ in their generation from the two different simulators. One would expect
that this in itself would create a more robust network as the features that in both datasets, when
classifying a certain event type, are likely to be those that define the classification type, as opposed
to simply being statistical noise.

However, when classifying detector data, one cannot make a more robust network by simply concate-
nating simulator data and detector data to train the network as the detector data does not come
labeled. The method being tested to see if a model that can classify using these features that are
invariant to the domain source is the DANN.

As discussed in the introduction, the DANN works by penalising the case where the domain is
able to be classified correctly by the network rather than rewarding it for being able to do so. This
is done by reversing the gradient in the backpropogation process for the domain classifier using a
custom gradient method that can be done in Keras.

If this gradient was zeroed one would be left with a model identical to the classifier discussed
previously, based on the MobileNet architecture. If the reversed gradient is not scaled it would have a
maximal effect, and would change the weights and biases with an equal effect to the backpropagation

22

from the feature classifier. This would be expected to reduce the effectiveness of the network as the
backpropopgation from the domain discriminator would be most destructive in cancelling out the
gradients of the feature classifier. In order to assess the effectiveness of a DANN network, a range of
linear scaling values, between 0 and 1, were be used to scale the gradient reversal vector.

23

Chapter 3

Results

3.1 Model Classification

3.1.1 Training on GENIE Dataset

After the training process is complete, the model weights and biases are saved to be able to transfer
the results of the training to test the trained model on event samples that the network had not seen
during the training and validation process. As well as this, statistics from the training and validation
process are produced, giving the accuracy and loss values at each epoch.

The accuracy is defined as the fraction of the data set that the model correctly classifies, with respect
to the truth label. The output of the model, for each event, is a vector with 3 components, much like
the shape of the label that was given to the model, However, the result of the network will not be
a one-hot encoded vector, but will have the model’s confidence in predicting each class- with the
model’s predicted class being the that the model is most confident in - the vector component with the
largest value. As these values represent probabilities of correct classification, the three components
will sum to 1.

As the weights of the network as initially randomly generated, one would expect it’s initial predictions
to be poor. As the model is given more training data it can alter these weights to better fit to the
data, and thus one would expect the accuracy of the model to increase over time. Similarly, this
means that the loss values are expected to decrease over time.

Alongside the training accuracy and loss, the validation accuracy loss are given from the training
process. These are the values given testing the model on the validation set- containing data not
seen in the training process. This process takes place at the end of each training epoch, and no
backpropagation takes place, the model is simply used for inference on the data to produce the
accuracy and loss values to judge how the model is performing on unseen data, to see whether it is
struggling to fit, overfitting, or successfully fitting to the data.

The MobileNet model was trained on 370864 samples from the GENIE event generator and validated
on 52980 samples. The training took place over 200 epochs. As can be seen from the training data,

24

Figure 9. Network training and validation accuracy and loss. The network was trained over 200
epochs using only GENIE generated events. The dateset was not balanced, and the number of νµ

events far exceed that of the other classes.

Figure 9, the classifier performs very poorly. The classifier has overfit to the data set, and is struggling
to generalise to the unseen validation data, producing the gap between the training accuracy, and the
validation accuracy. Unlike traditional overfitting problems where the model overfits by capturing
the statistical noise of the data, the overfitting here is taking place due to the data imbalance from
the training dataset. In the training dataset, 239932 of the samples were νµ interactions, 11564 νe
interactions, and 119366 NC interactions, and these proportions were mirrored in the validation and
testing datasets. Here the classifier can naively predict the event to be a νµ event every time and be
correct 65% of the time.

An ideal classifier will produce two distinct distributions, whereby it can confidently predict the
correct classification, and also confidently classify those that are of the the other classes- ie a very
low prediction probability of νe or NC events when the truth value is a νµ event. In Figure 10, it can
be seen that a large number of νµ events are accurately predicted with a high probability, however,
the truth νe and NC events are also being classified as νµ events. This classifier has struggled to
determine the differences between the different classes. This can also be seen in Figure 11, where the
νe classifier correctly identified νµ and NC events as not νe events with a high probability, however it
is classifying every event as a νµ, and thus no events as νe interactions, and incorrectly classifying
the νe events.

In this case it is redundant to look at the purity and the efficiency of the classifier as every event
is being classifier as as νµ event, giving the classifier a very high efficiency, as all the νµ events are
identified correctly, however the purity of the classifier is poor as events that are not νµ events are
being classified as so.

25

Figure 10. νµ classification output histogram. The dataset was trained and tested using only
GENIE generated events. The dateset was not balanced, and the number of νµ events far exceed that

of the other classes. Figures show the probability of being classified a νµ for events of all the
interaction types. Top Figure shows the entire dataset, while the bottom Figure shows a cropped

version of the same dataset with the axis limited to a reduced number of counts.

3.1.2 Training on a balanced GENIE Dataset

The solution to this imbalanced dataset problem was to pass to the model an equal number of of
νµ, νe and NC events. As it was not possible to obtain more training samples for νe events, so the
solution, as discussed previously, was to filter the the νµ and NC events so that the numbers of each

26

Figure 11. νe classification output histogram. Figures show the probability of being classified a νµ
for events of all the interaction types. The training process was the same as for that in Figure 10.

matched the number of νe events in the dataset. The balanced dataset contains 10432 νµ events,
10,245 ν events and 10236 NC events.

For this dataset the training performance, measured by classifier accuracy and categorical cross-
entropy loss, was much poorer than the training process without the filtering process to ensure equal
numbers of the interaction types, which can be seen in Figures 12 and 13. The reason for this is
simply that the number of training examples given to the network was fewer, and overfitting again
takes place. For this reason the network was trained over 100 epochs, as a previous network trained
over 200 epochs saw the performance metrics, accuracy and loss, of the network deteriorate as it
trained for a longer period of time, as the network continued to overfit in such a way.

This classifier, despite being trained on a smaller proportion of the data performed much better than
the previous classifier by not classifying all events as the most common type. In Figure 13 it can
be seen that the νµ classifier correctly classified νe and NC events as not νµ events- something the
previous classifier was unable to do as it had seen a much greater proportion of νµ events than any
of the others, and as a result could categorise any event as νµ and be correct more often than not.
The classifier is also able to correctly identify νe events as not νµ events, and to a lesser extent the
NC events.

In Figure 14, which shows the νe classifier output, it can be seen to classify many of the the νe events
correctly, and correctly identify the a number of νµ events as not νe events with a large confidence.
Qualitatively, it can also be seen to classify the NC events as not νe events better than the νµ
classifier classifies the NC events as not νµ.

A more quantitative method of determining the performance of a classifier is to calculate the

27

Figure 12. Network training and validation accuracy and loss. The network was trained over 100
epochs using only GENIE generated events, with a balanced number of each of the 3 interaction types.

classification purity and efficiency over the various selection cut values. Purity is the the fraction
of signal events in the sample that remain after making a selection cut, and is synonymous to the
accuracy of the classifier determined in the training process, for events with a output value above
that cut.

The selection cuts are made with the classification confidence that is given as the final output values
of the neural network. Events that are classified with a lower confidence value than the cut are not
used in any further analysis, with a good classifier giving the signal events at higher confidence values
if classifying them correctly.

Figure 15 shows the purity and efficiency curves for νµ classification, where the signal is the νµ
events, and the background the νe and NC events. At a selection cut of 0 our sample, which would
contain the entire dataset, is at its most impure, as the sample contains all the events from the
testing dataset, meaning the purity value will be 1/3 given that there are an equal number of the 3
event interaction types. Scanning the confidence values, the number of νµ compared to the other
interaction types increases as the classifier correctly identifies νµ events, until a cut of very close to
1. Here almost all of the events in the sample are νµ events, and very few are or NC events. This
value was 0.92, and an accuracy of 92% would correspond to a very good classifier, however it would
ignore that a large number of the νµ are disregarded by using a cut so high, meaning the efficiency of
the classifier must be taken into account.

The efficiency is the fraction of the signal samples in the selected sample to the total number of
signal events in the test dataset. At a low selection cut the efficiency value will be high as the most
of the signal events will be contained in the selected sample. As the cut value increases, the efficiency
will fall if there are signal events that are misclassified.

28

Figure 13. νµ classification output histogram. The dataset was trained and tested using balanced
GENIE only events. Figures show the probability of being classified a νµ for events of all the

interaction types.

Figure 14. νe classification output histogram. The dataset was trained and tested using balanced
GENIE only events. Figures show the probability of being classified a νe for events of all the

interaction types

As the purity increases, the efficiency decreases meaning that a trade off must be made to select a
correct cut value. On Figure 15, the product of purity and efficiency is also plotted, and this shows
that cuts at very high and very low values will yield poor results. It is this purity efficiency curve
that can be used to compare classifiers, with a better classifier having a curve with larger values,
further from the X-axis. Figure 16 shows the purity, efficiency and their product for the νe classifier.
The νe classifier, performs similarly to the νµ classifier, when trained on equal numbers of event
integration types from the GENIE generator.

29

Figure 15. Purity, efficiency and their product, curves for the νµ classifier trained and tested on on
a balanced GENIE dataset. The x-axis shows the confidence percentage of the network out (output

multiplied by 100 to give the percentage).

Figure 16. Purity, efficiency and their product, curves for the νe classifier trained and tested on a
balanced GENIE dataset.

3.1.3 Training on a balanced GENIE Dataset and evaluated on GiBUU
Data

In order to see if there was a bias in the training process the model previously described in the
previous section was used to classify GiBUU events. As the model had previously been trained on
GENIE only events, if the classification results of GiBUU were poorer, we could establish that the
model had become too specific to GENIE dataset and that there were differences in how the GENIE
and GiBUU simulated these events.

The classifier was tested on 8856 events produced by GiBUU with an equal number of each of the
interaction types. The νµ classifier performs similarly when tested on GiBUU events as to when tested

30

Figure 17. νµ classification output histogram. The dataset was trained using balanced GENIE only
events- the same training process as the model in figures 13 and 14, but was evaluated on a balanced
GiBUU dataset. Figures show the probability of being classified a νµ for events of all the interaction

types.

Figure 18. νe classification output histogram. The dataset was trained using balanced GENIE only
events- the same training process as the model in figures 13 and 14, but was evaluated on a balanced
GiBUU dataset. Figures show the probability of being classified a νe for events of all the interaction

types.

on GENIE events, with a similar proportion of events being correctly classified with a confidence
level of above 90%, this can be seen by comparing Figures 17 and 13. The difference between the
two classification results is that at at confidence levels between 10% and 30%, see Figure 17, all
three event types can be seen to be classified with similar confidence levels by the model with a
similar distribution. Due to this mis-classification of νµ events, the efficiency curve in Figure 18 falls
steeply over this model output range, but then flattens out, as very few events are classified with a
confidence between 30 and 80%. This may be because the GiBUU generator produces a class of each
event that look similar to the others. This is unusual as we would expect some νµ and NC events to

31

Figure 19. Purity, efficiency and their product, curves for the νµ classifier trained on a balanced
GENIE dataset and tested on a balanced GiBUU dataset. The x-axis shows the confidence percentage

of the network out (output multiplied by 100 to give the percentage).

Figure 20. Purity, efficiency and their product, curves for the νe classifier trained on a balanced
GENIE dataset and tested on a balanced GiBUU dataset.

look similar, and some νe and NC events to look similar, but not νµ and νe events to do so.

Looking at the classification of the νe events produced by GiBUU in Figure 19, we see that the model
is not as strong in classifying events produced by GiBUU compared to produced by GENIE for the
GENIE trained model. A similar proportion of the event samples were confidently correctly classified
as νe events with a confidence of 90% and above. The model also correctly classifies νµ events as not
νe with a high level of confidence, however the proportion of such events is smaller in the GiBUU
dataset than the GENIE testing dataset. A reason for this is likely the slightly lower confidence
classification of νµ events, as well as NC and νe events between 5% and 25% confidence levels. As
with the νµ classifier, the similarity in the distribution of confidence levels for the three interaction
types in this confidence range is very similar, and indicates some similarity that the model is unable

32

Figure 21. Network training and validation accuracy and loss.The network was trained over 100
epochs using both GENIE and GENIE generated events. With an equal number of all three event

types.

to discern between these events. As there are a larger number of νe events are wrongly classified
with a high confidence, the efficiency curve in Figure 20 falls very steeply, resulting in a poor purity
efficiency product curve compared to Figure 16.

3.1.4 Training on both GENIE and GiBUU Data

A model was trained on both the GENIE and GiBUU datasets, and contained 61,804 samples for
training, 8,830 for validation and 17,658 for testing with an equal number of the 3 interaction types,
and an equal number of GENIE and GiBUU generated events.

From the training statistics in Figure 21, we can see that the model does not over fit the same way
the imbalanced dataset did. The validation set often performs better than the training process,
and this is because during the training process the dropout function is applied, so that network is
classifying based on only a subset of its architecture. When then validating, all the nodes in the
model are now available producing a more powerful classifier. The validation set also performs more
poorly than the testing set during some epochs of the process, and this is because the network has
over fit to the data it has seen and does not generalise as well to the unseen data. Overtime these
two processes oscillate, however the overall trend of performance is increasing, as is expected.

Looking at the νµ classifier output, Figure 22, we can see that the network performs well- better than
the classifier that was trained on only GENIE events. The νµ classifier successfully classifies a large
proportion of the truth νµ events correctly with a confidence of 90%, while successfully classifying
nearly all of the truth NC events as not νµ with a confidence level of 60% and νe with a confidence

33

Figure 22. νµ classification output histogram. The dataset was trained and tested using data from
both GENIE and GIBUU generated events. The dataset contained an equal number of all three event

types.

Figure 23. νe classification output histogram. The results were produced from the same training
and testing process as Figures 21 and 22.

of 80%. A number of truth νµ events are predicted as not νµ with a similar probability as the NC
events, and this may be cause they are the subset of the νµ that appear most similar to NC events,
this will be looked into further in the Domain Classification section.

The νe classifier, in Figure 23, does not perform as strongly as the νµ classifier, with a much smaller
proprtion being correctly identified as νe events with a confidence of 80%. What the νe does well is
that it is able to correctly identify events as not νe events, with a large proportion of the νµ and
NC events being classified as not νe events with a confidence level of 90%. What also can be seen is
again a number of νe are incorrectly identified as not νe with a similar confidence distribution as the
NC events, and this may be as these are the νe events that look similar to the NC events that have
large showers.

34

Figure 24. νµ classification output purity, efficiency and their product. The results were produced
from the same training and testing process as Figures 22 and 23.

Figure 25. νe classification output purity, efficiency and their product. The results were produced
from the same training and testing process as Figures 22 and 23.

By looking at the νµ purity-efficacy plot in Figure 24 and νe plot in Figure 25, it can be seen that
the νµ purity-efficiency product curve confirms the better performance that was indicated in Figure
22. The selection cut for the νµ classifier would be made at a might higher value than with the νe
classifier, and a cut at a 60% confidence value would provide a classification accuracy, given by the
purity value of 82% while retaining 62% of the νµ events.

35

Figure 26. ROC curves for νµ classification on the left, and νe classification on the right. A blue
curve represents GiBUU events and an orange curve, the GENIE events.

Using a Receiver Operating Characteristic (ROC) curve, which plots the true positive rate against
the false positive rate of a binary classifier, in this case the classifier classifies whether the interaction
was identified as a νµ or not a νµ event (and the same with the νe classifier to indicate how well the
classifier performs, and provides a more intuitive visualisation for comparing performances. Figure 26
show the ROC curves for νµ and the νe classifiers. The dotted line represents a random performance,
and the closer a curve is to the upper left of the graph, the stronger the performance. By displaying
the curves separately for GENIE and GiBUU events we are able to see that with both classifiers, the
GiBUU events are classified with a higher accuracy than the GENIE events. This may be because a
proportion of GiBUU events are more distinctive in someway and the classifier learns how to classify
these.

3.1.5 Network Interpretability

To try and understand why the network was classifying as it was, we decided to look at the node
values of the penultimate layer of the trained network. This dense layer of 1024 nodes feeds into
the final dense layer with 3 nodes, one for each of the classification types. By looking at the node
activation layer, patterns emerge as to the importance of each node, and how the model has trained
the weights and biases to learn how to classify each image for the result to be produced in the final
output layer.

This analysis was performed on the classifier trained in section 3.1.4, which contained an equal
number of events of each of the interaction type and from GENIE and GiBUU. The majority of the
nodes in the final layer, 78.4%, did not activate for any of the events and as a result would have no
impact on the final classification. By plotting a histogram of the values of the nodes, and separating

36

Figure 28. Node activation values, for Node 85, for events of all three types and both event
generators from the training process in section 3.1.4, where the network was trained and tested on

equal GENIE and GiBUU combined data over 100 epochs.

Figure 29. Node activation values, for Node 51, for events of all three types and both event
generators from the training process in section 3.1.4.

Figure 30. Node activation values, for Node 145, for events of all three types and both event
generators from the training process in section 3.1.4.

the distributions depending on interaction type and generator source, it became clear that activation
of certain nodes indicates how the model will classify the event. An example was node 85, see Figure
28, here it can be seen that, on the most part, if the node is activated, the event will be classified

37

Figure 31. Node activation values, for Node 17, for events of all three types and both event
generators from the training process in section 3.1.4.

Figure 32. Node activation values, for Node 9, for events of all three types and both event
generators from the training process in section 3.1.4.

as a νe event, especially at large values. This is also visible in Figure 29, where activation mostly
indicates that the event will be classified as a νµ event, and this is more apparent at large values of
the node.

With some nodes, see Figure 20, certain values of the node indicate the classification of the event,
with overlapping regions of the distributions visible. While many indicate the domain source of the
event. This can be seen in Figure 31, where the largest values of the node activation are produced
when the event is a GiBUU produced νµ event. In Figure 32, the largest activation values occur
when a GENIE produced νe event is passed through the network for classification.

In order to be able to determine any patterns over the entirety of the penultimate node layer, rather
than using qualitative methods on an individual basis, the node activation values were treated as
distributions, for the various event types. Here the event types consisted of the 3 event interaction
types and the two event generators. The maximum value of the purity efficiency functions was taken
to represent each interaction type for each node. For each interaction type, ie. GENIE generated or
νµ, an array was produced for the maximum purity efficiency values for each node. In order to see
if there were any correlations between the values for each interaction type the arrays were plotted

38

against each other as scatter plots.

While this may not be the most robust operation, what it does enable it the quantification of the
separation of these node value distributions. By treating the node histograms as distributions, a
purity efficiency curve will determine the separation of that distribution, from the background- the
other event types. As significant patterns are being looked for in the higher values of nodes, as
these are where greater activation has taken place, a purity efficiency calculation is appropriate, as
these methods are used for classifications where correct classification is given by greater activation at
higher confidence levels.

Figure 33. Node activation values purity efficiency curve maximal values over all nodes to see the
correlation between νµ events and GibUU generated events

Most combinations showed no correlation, however the strongest correlation can be seen between the
νµ events and the GibUU events. This indicates that node activation where there was a measured
separation were able to measure such for certain nodes for both νµ events and GibUU events. An
example of this would be Figure 33, where the largest activation was seen by GibUU produced νµ
event. The strong positive correlation indicates that there is a correlation between how easily the
classifier classified the event, and if that event was a νµ produced by GibUU produced, meaning
these events have features that make them easily identifiable, or have features that were well learned
by the model.

39

3.2 Domain Classification

Figure 34. Network training and validation accuracy and loss for a discriminator network. The
network was trained over 100 epochs using both GENIE and GENIE generated events. With an equal

number of all three event types.

The network was modified to classify the events according to their production domain. In the training
there were an equal number of GENIE and GiBUU events, as well as an equal number of each
interaction type, to ensure that the model could train fairly and was not influenced by the distribution
of events that may or may not be indicative of the domain. In Figure 34, the model does not appear
to overfit, and the increase in accuracy tends to zero very quickly within the 100 epoch training
process. The classification distribution can be seen in Figure 35 where there GENIE classifier output
can be seen. The GiBUU classifier output is not shown as this is a binary classification task, and the
GiBUU classifier is identical to that of the GENIE classifier simply reflected about the y-axis.

From Figure 35 we can see that the network struggles to classify the events from the two domains with
confidence. Majority of the GENIE events are correctly classified with a probability between 50% and
75%. However with a very similar probability distribution a large proportion of the GiBUU events
are incorrectly classified as GENIE events, indicating that these events are similar in appearance.
However, with a confidence of 80% and above (20% and below on the GENIE classifier) the classifier
correctly identifies a number of GibUU events, indicating that these events are fundamentally different
in nature to the other GiBUU events, as well as the GENIE events that were incorrectly predicted
as not GENIE events with a confidence of 80%, and it is this difference in production nature that
may cause bias in the interaction type classification when classifying events from the two different
domains.

Figure 36 shows the interaction type of the events that are strongly classified as GiBUU events. There

40

Figure 35. GENIE event classification output histogram. The dataset was trained and tested using
an equal number of GENIE and GiBUU generated events. The dataset contained an equal number of

the interaction types.

Figure 36. Histogram of the interaction types of events that the discriminator correctly identified as
GiBUU events, with a confidence of greater tha 70%

is a spread in the event types rather than one event type in particular being produced differently
by GENIE and GiBUU. The νµ feature the least here and one would expect this is because of the
nature of νµ interaction where the resultant µ leaves a very definite track. This may also explain
why the classifier in section 3.1.4 was much more confident in correctly predicting the νµ events-

41

Figure 37. nhitslc- number of hits value plotted for events that with GENIE classification values of
less that 20% for both GENIE and GiBUU events, and greater than 30% for GiBUU events, from the

discriminator network

because they are easier to distinguish, as well as there being less variation between how the events
are simulated between GENIE and GiBUU.

To try and understand the physical properties of these events, in Figure 37 the number of hits
value is plotted for the GiBUU events that were classified as definitely GiBUU events, with a GENIE
output value of less than 0.2, the GENIE events of the same GENIE output value and the GiBUU
events with a GENIE classification output value of greater than 0.3. What can be seen is that the
GiBUU events that were easily distinguishable are unique in their physical properties. They, on
average, produce a much larger number of hits, than any other event, and in Figure 38 are seen to
have much larger sum of FLS hits that made CellHits from this neutrino, energy values- unlike the
rest of the events that typically have very low energy values here. The large number of hits suggests
that these events have large showers- it then makes sense that they are mostly comprised of e events
and NC that look very similar.

42

Figure 38. visE- sum of FLS hits that made CellHits from this neutrino, energy value value plotted
for events that with GENIE classification values of less that 20% for both GENIE and GiBUU

events, and greater than 30% for GiBUU events, from the discriminator network

3.3 Domain Adversarial Training

The approach to see if a classifier that was invariant to these domain variations was to train a DANN
that appended the CNN model that had been used previously. In order to determine the effectiveness
of the DANN in producing a robust network invariant to the domain that the event was produced by,
the feature classifier network was measured in the same way that the classifier networks were, and
the purity efficiency curves were used to determine the performance of the network.

Scaling factors between 0 and 1, at 0.1, 0.3, 0.5, 0.7 and 0.9, were used in the training process of
each model. Again the models were trained, validated and tested on a dataset containing an equal
number of each of the three interaction event types, and an equal number of events produced by
GiBUU and GENIE. The results of the νµ classifier are in Figure 39, and show that the performance
of the model does reduce as the gradient reversal scaling factor increases. For the smaller values this
difference is very small, but as the values increase, the detrimental effect of the gradient reversal has
a larger effect on the classification accuracy. This reduction in classification performance can also be
seen in the νe classifier in Figure 40. Here the reduction in performance is much larger as the scaling
factor increases.

This is as expected, in order for the network to become less sensitive to the domain in which the
events are being produced, the network is likely to reduce in accuracy as certain events that were
easily identified as an interaction type in one of the domains are now being penalised for having such

43

Figure 39. Purity, efficeny and their product, for DANN νµ classifier output for DANN gradient
reversal scale factors of: 0.1, 0.3, 0.5, 0.7 and 0.9

Figure 40. Purity, efficeny and their product, for DANN νe classifier output for DANN gradient
reversal scale factors of: 0.1, 0.3, 0.5, 0.7 and 0.

distinctive features. This trade off in classification performance is beneficial however, as the model
does not specialise to these distinctive features of the domain, and is better suited to evaluate events
from a different domain.

In having a more robust model, the difference in classification performance of the model for events
from the different domains would tend to zero. This would be as the model performs equally well

44

on events produced by either domain, and thus is invariant to any differences between the two. In
Figure 41 a ROC curve is plotted to show the νµ classification performance for the models of varying
gradient scale factors. Different curves were used to plot the performance of events from the two
different sources, with solid lines corresponding to GiBUU generated events, and dashed lines for
GENIE events, with the colours representing the scale factor used for the training process. While it
is very small, it can be seen that the difference in classification performance between the GENIE and
GiBUU events does reduce as the scale factor increases. The classification of GENIE events can be
seen to increase as the scale factor strength increases, indicating that the model, which previously
became overly specialised to GiBUU event features was not less dependent on these which were
not found in GENIE events. This does suggest that the νµ classifier does become more robust as a
DANN training process with a larger scale factor takes place- however it is a very small change and
would most likely not be considered a negligible improvement when compared to statistical noise.
Not all the scale factor training processes were used as the Figure became unreadable, and the scale
factor of 0.9 was not used due to it being an exceptionally poor classifier, as seen in Figure 40.

This same increase in robustness cannot be seen by the the νe classifier, Figure 41, where the increase
in the strength of the DANN gradient reversal resulted in an overall poorer performance on events
produced by both GENIE and GiNUU, with this reduction in performance proportional to the
strength of the gradient reversal scale factor. The performance reduces considerably, meaning that
the DANN has reduced the network’s ability to classify νe events by penalising any ability the network
had at discriminating between the two domains. In Figure [], the νe classifier trained on GENIE
data performed more poorly when then tested on GiBUU data, indicating that there was a difference
the features in the image of a GENIE and GiBUU produced νe. The DANN was unable to reduce
the difference in classifier performance between events produced from the two domains, suggesting
that the νe events now became more difficult to determine now that domain training took place.

Figure 36 showed that the nature of the events that were easily identifiable as GiBUU events nearly
completely comprised of NC and νe events. The result of successful DANN training would mean
that these easily identifiable GiBUU events would result in a negative gradient that backpropagated
to make these events less easily identifiable by the network. The proportion of events that were easily
identified as being produced by GiBUU that were νµ events was only 16%, and thus the DANN
process, with regards to these domain identifiable events, was much more limited, which is one reason
as to why the DANN process did not reduce the performance of the νµ classifier. By making the
features of these NC and νe events have a reduced impact on the classification process of the network,
the network as a result became less successful at identifying these events.

This is very straightforward to follow as to how the GiBUU νe performance would have been reduced,
but the GENIE performance also fell, leading to a poorer classifier, rather than a more robust one.
This may be due to difficulties that are currently the case in classification of GENIE events, such as
some NC events looks similar to νµ events and other similar ν as displayed in previous sections, but
further work would be required to provide insight into this.

45

Figure 41. ROC curve for for DANN νµ classifier, for DANN gradient reversal scale factors of:
0.1, 0.3, and 0.7, where the GiBUU events are plotted with solid lines and the GENIE curves with

dotted lines)

46

Figure 42. ROC curve for for DANN νe classifier, for DANN gradient reversal scale factors of:
0.1, 0.3, and 0.7, where the GiBUU events are plotted with solid lines and the GENIE curves with

dotted lines

47

Chapter 4

Conclusions

4.1 Model Classification

This project was able to demonstrate that CNNs are effective tools that can be used to classify
neutrino interaction types from image data supplied by MC event simulation generators. Analysis
was able to show that there are significant differences in how the two generators GENIE and GiBUU
simulate NC and νe events, and these differences impact the classification of events when using a
classifier has been trained on one generator and tested on the other/both, or if the classifier is trained
on both.

While the datasets used in this project were balanced, it is unsure whether applying these models
to unbalanced test data provided at the near detector at NO~A would produce results that are not
reflective of reality- that over predict the occurrence of NC and νe events due to their much larger
prominence in the training data than is the case. Training unbalanced dataset is an ongoing difficulty
of machine learning, and one where further research could be applied following on from this project.

By analysing the penultimate dense layer activation values when test data was passed through the
model, the physical properties of those events that contained domain bias was produced, giving
insight into how deep learning classifiers of such events are made less accurate due a domain biases.
By looking at using the same network architecture to produce a classifier that was able to discern the
production source of events, the opportunity for a DANN to reduce this domain bias was displayed. A
DANN network was trained using various gradient reversal strength factors and was able to improve
the model robustness for νµ events, but future work may lead to such improvements for νe events.
The partial success DANN network stands as a proof of concept that the method can prove effective,
and with more work, and more data, a DANN could be a very powerful tool to reduce domain bias
in classification models.

48

4.2 Future Work

There are a number of potential avenues for future work following on from this project. One is looking
at how penultimate layer analysis can be used to further the field of machine learning explain-ability.
Machine learning, and in particular, deep learning algorithms are viewed as black boxes that are
given inputs and produce outputs, but methods such as those attempted in this project display that
insights into how these algorithms make their decisions can be interpreted.

A potential technique to improve the classification accuracy of the model would be one in which
chosen penultimate layer nodes were frozen out. This project did not allow the time to explore this,
but by writing custom gradient layers, much like the gradient reversal layer implemented in the
DANN, to zero back propagation from those selected nodes, but removing the impact of nodes that
activated to indicate domain variation, may improve the classification result of the network if the
classification features were the only ones that were used within the network.

As with all supervised machine learning algorithms, improvements are made when more data is
provided to the network in the training process. Further work would be to train classifiers, domain
classifiers and DANN models with larger amounts of input data, and potentially better hard were to
accelerate this process to reduce the problem of overfitting due to small amounts of data, leading
the networks to pick up on statistical noise. An alternative to this, to reduce the ill-posed nature of
the problem would be to attempt to use a network architecture with a smaller number of trainable
parameters. This network may be less powerful than the MobileNet architecture base used in this
project, however it would be far less susceptible to overfitting.

Using a DANN to train inputs of both simulated data and detector data would be the next step to
have a major impact at NOνA and improve the computer vision classifier already being used there
to improve the accuracy of the data being used in neutrino oscillation calculations.

Further work could be carried out into understanding the results of the DANN network, and how
one may be able to improve the accuracy of the network. An alternate ADDA method has been
produced by [30], that encodes the labels in the source domain and a separate encoding that maps
target labels to the same space using a mapping learned though a domain-adversarial loss. This
could be another avenue of research for the problem of domain bias reduction.

In order to produce more training data there is the potential for a form of data augmentation, where
small changes- an example would be a Gaussian blur, are applied to the training data to produce
new training data from the original training set. This would be especially useful for νe events, where
the proportion of data simulated at the near detector is much smaller than that of νµ events.

49

Bibliography

[1] E. Vitagliano, J. Redondo, G. Raffelta et al. Solar neutrino flux at keV energies. 2017.

[2] Z. Maki, M. Nakagawa, S. Sakata et al. Remarks on the Unified Model of Elementary Particles.
1962.

[3] Z. Szadowski, D. Glas, K. Pytel et al. Artificial Neural Networks as a FPGA Trigger for a
Detection of Neutrino-Induced Air Showers. 2016.

[4] G.N Perdue, A. Ghosh, M. Wospakrik et al. Reducing model bias in a deep learning classifier
using domain adversarial neural networks in MINERνA experiment. 2018.

[5] M. Brenzke Development and Optimization of Deep Neural Networks for Energy Reconstruction
of Muon Events in IceCube. 2017.

[6] Y. Fukud, T. Hayakawa, E. Ich. et al. The Super-Kamiokande detector. 2002.

[7] R. Acciarri, M. A. Acero, M. Adamowski et al. Long-Baseline Neutrino Facility (LBNF) and
Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 1: The LBNF
and DUNE Projects. 2016.

[8] A. Aurisano, A. Radovic, D. Rocco et al. A Convolutional Neural Network Neutrino Event
Classifier. 2016.

[9] Y. Fukuda , T.Hayakawa , E.Ichihara et al. Evidence for oscillation of atmospheric neutrinos.
1998.

[10] F. Capozzi, E. Lisi and A. Marrone et al. Neutrino masses and mixings: Status of known and
unknown 3ν parameters. 2016.

[11] C. Giganti, S. Lavignac, M. Zito et al. Neutrino oscillations: the rise of the PMNS paradigm.
017

[12] J. Sonneveld Searches for physics beyond the standard model at the LHC. 2018.

[13] M. Ishitsuka et al. NOvA Near Detector.

[14] P. Singh Extracting neutrino oscillation parameters using a simultaneous fit of the νe appearance
and νµ disappearance data in the NOvA experiment. 2017.

50

[15] C. Szegedy, C. Hill and Y. Jia et al. Going deeper with convolutions. 2014.

[16] P. Adamson, C. Ader and M. Andrews et al. First measurement of muon-neutrino disappearance
in NOvA. 2016.

[17] P. Adamson, C. Ader and M. Andrews et al. First measurement of muon-neutrino appearance
in NOvA. 2016.

[18] W. McCulloch and W. Pitts. A Logical Calculus of Ideas Immanent in Nervous Activity. 1943.

[19] C. Andreopoulos , C. Barry , S. Dytman et al. The GENIE Neutrino Monte Carlo Generator
PHYSICS & USER MANUAL. 2015.

[20] C.Andreopoulos , A.Bellb, D.Bhattacharyab et al. The GENIE Neutrino Monte Carlo Generator.
2009.

[21] O. Lalakulich, K. Gallmeister, U. Mosel et al. Neutrino nucleus reactions within the GiBUU
model. 2011.

[22] R. Acciarri, C. Adams, R. An et al. Convolutional neural networks applied to neutrino events in
a liquid argon time projection chamber. 2017.

[23] M. Sandler, A. Howard, M. Zhu et al. MobileNetV2: Inverted Residuals and Linear Bottle-
necks.2018

[24] Y. Ganin, E. Ustinova, H. Ajakan et al. Domain-Adversarial Training of Neural Networks. 2016.

[25] D. Kingma, J. Ba. Adam: A Method for Stochastic Optimization. 2014.

[26] Q. Zhang, Y. Nian Wu, S. Zhu et all Interpretable Convolutional Neural Networks. 2018.

[27] Z. Bousmalis, G. Trigeorgis, N. Silberman et al. Domain Separation Networks. 2016.

[28] G. Louppe, M. Kegan K. Crammer et al. Learning to Pivot with Adversarial Neural Networks.
2017.

[29] R. Brun, F. Rademakers et al. ROOT - An object oriented data analysis framework. 1997.

[30] E. Tzeng, J. Hoffman, K. Saenko et al. Adversarial Discriminative Domain Adaptation 2017

[31] H. Guo and S. B. Gelfand, Analysis of gradient descent learning algorithms for multilayer
feedforward neural networks. 1990.

51

Appendices - Source Code

functions.py

import h5py

import numpy as np

import copy

import pandas as pd

import random

import pickle as pkl

import mobilenetv2

import tensorflow as tf

import keras

from keras.optimizers import SGD, Adam

from keras.callbacks import EarlyStopping, ModelCheckpoint

def encode_event(array, i):

"""encode_event

Function that takes in an hdf5 array and an index gives the run, subrun, evt,

↪→ subevt, cycle of an event

and returnsthem as a string for quick lookups

Arguments

array: branch from the hdf5 files

i: index within the array

Returns

string containing run, subrun, evt, subevt, cycle

"""

run = array[’run’][i]

subrun = array[’subrun’][i]

evt = array[’evt’][i]

subevt = array[’subevt’][i]

cycle = array[’cycle’][i]

try:

52

genweight = array[’genweight’][i]

arr_str = (’{},{},{},{},{},{}’.format(run, subrun, evt, subevt, cycle,

↪→ genweight))

except KeyError:

arr_str = (’{},{},{},{},{}’.format(run, subrun, evt, subevt, cycle))

return arr_str

def get_files(path):

"""get_files

Function creates a list of all the hdf5 files in a directorty

Arguments

path: the path to the direectory

Returns

filenames: list of filenames"""

folder = os.listdir(os.fsencode(path))

filenames = [os.fsdecode(file) for file in folder if os.fsdecode(file).
↪→ endswith((’.h5’))]

return filenames

def data(file):
"""data

Function that extracts the data from the hdf5 file and returns the relevant

↪→ data

Arguments

file: hdf5 file name

Returns

f - the hfd5 file

file - hfd5 file name

Train_Params - a dictionary with keys = [run, subrun, evt, subevt, cycle]

↪→ and

values = [train array index, iscc value, pdg value]

maps - the arrays containing the image data

cvnmaps - the branch of the hdf5 file that contains the maps

"""

#import file

f = h5py.File(file, ’r’)

53

cvn training data branch and truth branch keys

cvnmaps = f[’rec.training.cvnmaps’]

mc = f[’rec.mc.nu’]

train_event = [encode_event(cvnmaps, i) for i in range(len(cvnmaps[’evt’]))]

mc_event = [encode_event(mc, i) for i in range(len(mc[’evt’]))]

#mapping

Train_Params = {}

for i in range(len(mc_event)):

for j in range(len(train_event)):
#only including the run, subrun, evt, subevt, cycle data from the mc

↪→ branch in the matching

mc_data = ’,’.join(mc_event[i].split(’,’)[:-1])

train = train_event[j]

if mc_data == train:

Train_Params[mc_event[i]] = j, mc[’iscc’][i][0], mc[’pdg’][i][0]

return f, file, Train_Params

def mu_cuts(f, file):
"""

Function that takes in an hdf5 file and creates a list of events that do not

↪→ pass the nu mu cuts:

nu mu cuts defined - "CAFAna/Cuts/NumuCuts2018.h"

cuts used - kNumuQuality && kNumuContainFD2017

"""

files_list = [os.fsdecode(file) for file in folder if os.fsdecode(file).

↪→ endswith((’.h5’))]

cut_arr_mu = []

kNumuQuality cut

en_numu = f[’rec.energy.numu’]

for i in range(len(en_numu[’trkccE’])):
if en_numu[’trkccE’][i]<=0:

s = encode_event(en_numu, i)

if s not in cut_arr_mu:

cut_arr_mu.append(s)

54

cut = [encode_event(sel_remid, i) for i in len(en_numu[’trkccE’]) if en_numu[’

↪→ trkccE’][i]<=0]

s = encode_event(cut, i)

if s not in cut_arr_mu:

cut_arr_mu.append(s)

sel_remid = f[’rec.sel.remid’]

for i in range(len(sel_remid[’pid’])):

if sel_remid[’pid’][i]<=0:

s = encode_event(sel_remid, i)

if s not in cut_arr_mu:

cut_arr_mu.append(s)

slc = f[’rec.slc’]

for i in range(len(slc[’nhit’])):
if slc[’nhit’][i]<=20 or slc[’ncontplanes’][i]<=4:

s = encode_event(slc, i)

if s not in cut_arr_mu:

cut_arr_mu.append(s)

cosmic = f[’rec.trk.cosmic’]

for i in range(len(cosmic[’ntracks’])):
if cosmic[’ntracks’][i]<=0 :

s = encode_event(cosmic, i)

if s not in cut_arr_mu:

cut_arr_mu.append(s)

kNumuContainFD2017 cut

shwlid = f[’rec.vtx.elastic.fuzzyk.png.shwlid’]

for i in range(f[’rec.vtx.elastic.fuzzyk.png.shwlid’][’start.x’].shape[1]):

a = min(shwlid[’start.x’][i],shwlid[’stop.x’][i])
b = max(shwlid[’start.x’][i],shwlid[’stop.x’][i])
c = min(shwlid[’start.y’][i], shwlid[’stop.y’][i])

d = max(shwlid[’start.y’][i], shwlid[’stop.y’][i])

e = min(shwlid[’start.z’][i], shwlid[’stop.z’][i])

f = max(shwlid[’start.z’][i], shwlid[’stop.z’][i])

if a <=-180 or b >=180 or c <=-180 or d >=180 or e <=20 or f >=1525:

s = encode_event(shwlid, i)

if s not in cut_arr_mu:

cut_arr_mu.append(s)

55

f = h5py.File(file, ’r’)

kal_track = f[’rec.trk.kalman.tracks’]

for i in range(len(kal_track[’start.z’])):

if kal_track[’start.z’][i]>1275 or kal_track[’stop.z’][i]>1275:

s = encode_event(kal_track, i)

if s not in cut_arr_mu:

cut_arr_mu.append(s)

slc = f[’rec.slc’]

for i in range(len(slc[’firstplane’])):

if slc[’firstplane’][i]<=1 or slc[’lastplane’][i]==212 or slc[’lastplane’][

↪→ i]==213:

s = encode_event(slc, i)

if s not in cut_arr_mu:

cut_arr_mu.append(s)

sel = f[’rec.sel.contain’]

for i in range(len(sel[’kalfwdcellnd’])):
if sel[’kalyposattrans’][i]>=55 or sel[’kalbakcellnd’][i]<10 or sel[’

↪→ kalfwdcellnd’][i]<5:

s = encode_event(sel, i)

if s not in cut_arr_mu:

cut_arr_mu.append(s)

return cut_arr_mu

def apply_cuts(Train_Params, cut_arr, file):

"""apply_cuts

Function that the list of cut events and removes them from the mctruth events

↪→ dictionary

Arguments

Train_Params: the dictionary of events containing iscc and pdg data

cut_arr: the list of events that did not pass the cuts

Returns

Train_Params_Cut: the new dictionary of events

events: the training data branch array index values of the events that

↪→ passed the cut

train: 2-dimential array, iscc, pdg

train_val: 1-dimential array, iscc

56

"""

Train_Params_Cut= copy.deepcopy(Train_Params)

for i in cut_arr:

if i in Train_Params_Cut.keys():

del Train_Params_Cut[i]

dataframes = []

for key in Train_Params_Cut.keys():

iscc = Train_Params_Cut[key][1]

pdg = Train_Params_Cut[key][2]

if iscc == 0:

interaction = 1

elif iscc == 1 and pdg*pdg ==144:

interaction = 2

elif iscc == 1 and pdg*pdg ==196:

interaction = 3

key_split = key.split(’,’)

run = key_split[0][1:-1]

subrun = key_split[1][1:-1]

evt = key_split[2][1:-1]

subevt = key_split[3][1:-1]

cycle = key_split[4][1:-1]

weight = key_split[5][1:-1]

dataframes.append(pd.DataFrame({’run’ : run,

’subrun’ : subrun,

’evt’ : evt,

’subevt’ : subevt,

’cycle’ : cycle,

’weight’: weight,

’train_index’ : Train_Params_Cut[key][0],

’label’ : interaction,

’file’ : [file]

}))

df = pd.concat(dataframes)

return df

57

def e_cuts(f, file):
"""e_cuts

Function that takes in an hdf5 file and creates a list of events that do not

↪→ pass the nu e cuts:

nu mu cuts defined - "CAFAna/Cuts/NueCuts2017.h"

cuts used - kNue2017NDFiducial && kNue2017NDContain &&

↪→ kNue2017NDFrontPlanes

"""

Nu E Preselection Cuts

cut_arr_e = []

f = h5py.File(file, ’r’)

kNue2017NDFiducial

vtx_el = f[’rec.vtx.elastic’]

for i in range(len(vtx_el[’vtx.x’])):
a= vtx_el[’vtx.x’][i]

b= vtx_el[’vtx.y’][i]

c= vtx_el[’vtx.z’][i]

if a<=-100 or a>=160 or b<=-160 or b>=100 or c<=150 or c>=900:

s = encode_event(vtx_el, i)

if s not in cut_arr_e:

cut_arr_e.append(s)

kNue2017NDContain

shwlid = f[’rec.vtx.elastic.fuzzyk.png.shwlid’]

for i in range(len(f[’rec.vtx.elastic.fuzzyk.png.shwlid’][’start.x’])):
a = min(shwlid[’start.x’][i],shwlid[’stop.x’][i])
b= max(shwlid[’start.x’][i],shwlid[’stop.x’][i])

c= min(shwlid[’start.y’][i], shwlid[’stop.y’][i])

d= max(shwlid[’start.y’][i], shwlid[’stop.y’][i])

e = min(shwlid[’start.z’][i], shwlid[’stop.z’][i])

f= max(shwlid[’start.z’][i], shwlid[’stop.z’][i])

if a <=-170 or b >=170 or c <=-170 or d >=170 or e <=100 or f >=1225:

s = encode_event(shwlid, i)

if s not in cut_arr_e:

cut_arr_e.append(s)

pass

kNue2017NDFrontPlanes

f = h5py.File(file, ’r’)

58

sel = f[’rec.sel.contain’]

for i in range(len(sel[’nplanestofront’])):
if sel[’nplanestofront’][i]<=6:

s = encode_event(sel, i)

if s not in cut_arr_e:

cut_arr_e.append(s)

return cut_arr_e

def maps(file):

"""maps Function that returns event maps from the hdf5 file

Arguments, file: hdf5 file name

Returns, maps - the arrays containing the image data

"""

#import file

f = h5py.File(file, ’r’)

cvn training data branch

cvnmaps = f[’rec.training.cvnmaps’]

maps = cvnmaps[’cvnmap’]

return maps

def image(maps):

"""image

Function that the array containing the images and formats them correctly

Arguments

maps: the array containing the images

Returns

image_dataset: nested array containing two images for each event for the z-

↪→ y and z-x planes

"""

image_dataset = np.zeros(shape=(2,80,100))

image_dataset[0,:,:] = np.rot90(np.asarray(maps[:8000]).reshape(100,80))

image_dataset[1,:,:] = np.rot90(np.asarray(maps[8000:]).reshape(100,80))

return image_dataset

59

def event(data, label):

"""event

Function that takes in an array of event images and displays them

Arguments

data: image array

i: index within the array

Returns

plot of image along with associated data

"""

#first view z-x plane

raw_im_1_cc = data[0,:,:]

#second view z-y plane

raw_im_2_cc = data[1,:,:]

fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(9, 9))

#axis lables

ax1.imshow(raw_im_1_cc, aspect=’auto’)

ax1.set_xlabel(’z␣(units)’)

ax1.set_ylabel(’x␣(units)’)

ax2.imshow(raw_im_2_cc, aspect=’auto’)

ax2.set_xlabel(’z␣(units)’)

ax2.set_ylabel(’y␣(units)’)

fig.suptitle(label)

def open_df(path, num):

"""open_df

Function that takes in a folder path and a number and unpickles the assosiated

↪→ dataframe

Arguments

path: path to the folder containing pickled dataframes

num: dataframe number, e.g. df_1.pkl

Returns

the dataframe containing the associated data

"""

with open(path+ ’df_{}.pkl’.format(num),’rb’) as file:

60

df = pkl.load(file)

return df

def open_df_gibuu(path, num):

"""open_df_gibuu

Function that takes in a folder path and a number and unpickles the assosiated

↪→ dataframe

Arguments

path: path to the folder containing pickled dataframes

num: dataframe number, e.g. df_gibuu_1.pkl

Returns

the dataframe containing the associated data

"""

with open(path+ ’df_gibuu_{}.pkl’.format(num), ’rb’) as file:
try:

df = pkl.load(file)
return df

#some gibuu file dataframes were not correctly saved, leading to Unpickling

↪→ Errors

except pkl.UnpicklingError:

print(’Unpickling␣Error␣with␣gibuu␣df␣file␣{}’.format(num))
pass

def generator(batch_size, steps_per_epoch, dataset, model = ’default’):

"""generator

Generator function that yeilds a tensor contraining image data and the

↪→ associated lables to be called by the keras

in training of the model

Arguments

batch_size: path to the folder containing pickled dataframes

steps_per_epoch: dataframe number, e.g. df_gibuu_1.pkl

dataset:

model:

Returns

batch_images:

batch_labels:

batch_events:

"""

61

batch_images = np.zeros((batch_size, 2, 80, 100))

batch_labels = np.zeros((batch_size, 3))

batch_events = np.zeros((batch_size, 2))

while True:

dataset = dataset.sample(frac=1).reset_index(drop=True)

for index in range(len(dataset[’file’])):

row = dataset.loc[index]

images = image(maps(row[’file’])[row[’train_index’]])

images = (images - np.min(images))/ (np.max(images) - np.min(images))

images.astype(float)

if abs(row[’label’]- 1) <=10**(-5):

labels = [1, 0, 0]

elif abs(row[’label’]- 2) <=10**(-5):

labels = [0, 1, 0]

elif abs(row[’label’]- 3) <=10**(-5):

labels = [0, 0, 1]

if ’_genie_’ in str(row[’file’]):
events = [1, 0]

elif ’gibuu’ in str(row[’file’]):
events = [0, 1]

batch_images[index%batch_size] = images

batch_labels[index%batch_size] = labels

batch_events[index%batch_size] = events

if index%batch_size==0 and index!=0:

if model== ’default’:

yield batch_images, batch_labels

elif model== ’descr’:

yield batch_images, batch_events

elif model== ’dann’:

yield batch_images, [batch_labels, batch_events]

62

def test_generator(batch_size, steps_per_epoch, dataset, data=’both’, model_type =

↪→ ’default’):

for index in range(len(dataset[’file’])):
row = dataset.loc[index]

weight = float(row[’weight’])
file = str(row[’file’])

rand = 0

rand2, rand3 = 1, 1

if (weight<= rand and ’gibuu’ in file) or \

(rand2 <= 0.98 and abs(float(dataset.loc[index][’label’])-3)<=10**(-5))
↪→ or \

(rand3 <= 0.82 and abs(float(dataset.loc[index][’label’])-1)<=10**(-5)):
↪→

pass

else:
images = image(maps(row[’file’])[row[’train_index’]])

images = (images - np.min(images))/ (np.max(images) - np.min(images))

if ’_genie_’ in file:
mc = [1, 0]

elif ’gibuu’ in file:
mc = [0, 1]

if abs(row[’label’]- 1) <=10**(-5):

label = [1, 0, 0]

elif abs(row[’label’]- 2) <=10**(-5):

label = [0, 1, 0]

elif abs(row[’label’]- 3) <=10**(-5):

label = [0, 0, 1]

yield images, row

def index_finder(probabilities, df_row):

genie_index_below = []

63

genie_index_above = []

gibuu_index_below = []

gibuu_index_above = []

for i , prob in enumerate(probabilities):

genie = prob[0][0]

gibuu = prob[0][1]

if gibuu<0.2:

gibuu_index_below.append(i)

elif gibuu>0.4 and gibuu<0.7:

gibuu_index_above.append(i)

if genie<0.2:

genie_index_below.append(i)

elif genie>0.4 and gibuu<0.7:

genie_index_above.append(i)

df_genie_below = pd.DataFrame(columns = df_row.columns)

df_genie_above = pd.DataFrame(columns = df_row.columns)

df_gibuu_below = pd.DataFrame(columns = df_row.columns)

df_gibuu_above = pd.DataFrame(columns = df_row.columns)

for i, j in enumerate(genie_index_below):
df_genie_below.loc[i] = df_row.loc[j]

df_genie_below[’type’] = [’genie␣below’]*len(df_genie_below)

for i, j in enumerate(genie_index_above):
df_genie_above.loc[i] = df_row.loc[j]

df_genie_above[’type’] = [’genie␣above’]*len(df_genie_above)

for i, j in enumerate(gibuu_index_below):

df_gibuu_below.loc[i] = df_row.loc[j]

df_gibuu_below[’type’] = [’gibuu␣below’]*len(df_gibuu_below)

for i, j in enumerate(gibuu_index_above):

df_gibuu_above.loc[i] = df_row.loc[j]

df_gibuu_above[’type’] = [’gibuu␣above’]*len(df_gibuu_above)

frames = [df_genie_below, df_genie_above, df_gibuu_below, df_gibuu_above]

df = pd.concat(frames)

df.index = range(len(df[’file’]))

64

for index, evt in enumerate(df[’evt’]):

file = df[’file’][index]

f = h5py.File(file ,’r’)

mc = f[’rec.mc.nu’]

columns = [str(i) for i in mc.keys()]

df_out = pd.DataFrame(columns = columns)

for count, val in enumerate(mc[’evt’]):

if int(val) == int(evt):
if int(mc[’subevt’][count]) == int(df[’subevt’][index]):

mc_index = count

break

elif int(val)>=int(evt)+1:
break

row = [mc[str(i)][mc_index][0] for i in mc.keys()]

df_out.loc[index] = row

return df_out

methods.py

from functions import *

from mobilenetv2 import *

from keras.models import Model

from itertools import islice

def cuts(path):

"""cuts

Function that takes in an hdf5 file and applied multiple functions to :

nu mu cuts defined - "CAFAna/Cuts/NueCuts2017.h"

cuts used - kNue2017NDFiducial && kNue2017NDContain &&

↪→ kNue2017NDFrontPlanes

"""

#import files

file_dir = get_files(path)

#split input files into batches of 50 files

batches = [file_dir[i:i+100] for i in range(0, len(file_dir), 100)]

65

batch_no = 0

#for set of 50 files

for i in batches:

batch_no+=1

dataframes = []

#for file in batch

for j in i:

try :

hdf, file, Train_Params = data(path + ’/’ + j)

######### Cuts

↪→ ###

cut_arr_mu = mu_cuts(hdf, file)
dataframes.append(apply_cuts(Train_Params, cut_arr_mu, file))

cut_arr_e = e_cuts(hdf, file)
dataframes.append(apply_cuts(Train_Params, cut_arr_e, file))

except OSError:

pass

Save files

↪→ ###

↪→

out_path = ’/home/ishokar/dataframes/’

df = pd.concat(dataframes)

df.index = range(len(df[’file’]))

with open(out_path + ’/df_{}.pkl’.format(batch_no),’wb’) as f1:

pkl.dump(df, f1)

66

def train(train_type = ’default’,

epochs= 200,

batch_size = 32,

dataset_percent = 0.8,

call_back_patience = 10,

learning_rate = 0.001,

DANN_strength = 0.1,

model_optimiser=’SGD’,

out_file_name = ’32_SGD’):

"""train_mobnetmodelv2

Function that compiles and trains the mobilenet network

Arguments/Hyperparamaters

epochs: number of epochs,

batch_size : batch size,

learning_rate : learning rate,

call_back_patience : number of epochs patience before stopping training if

↪→ no improvement takes place,

save_best : saves weights of the best model based on validation loss

Returns

mobnetmodel: trained model

history : training statistics

"""

path = ’/home/ishokar/dataframes/’

df_train = open_df(path, ’train_equal’)

df_train.index = range(len(df_train[’file’]))

steps_per_epoch = round(len(df_train[’file’])/(batch_size)*dataset_percent)

df_val = open_df(path, ’val_equal’)

df_val.index = range(len(df_val[’file’]))
val_steps_per_epoch = round(len(df_val[’file’])/(batch_size)*dataset_percent)

if model_optimiser == ’SGD’:

opt= SGD(lr=learning_rate, momentum=0.9)

elif model_optimiser == ’Adam’:

opt = Adam(learning_rate=learning_rate)

else:
print(’Not␣valid␣model_optimiser␣name’)

67

callbacks = [EarlyStopping(monitor=’accuracy’, patience=call_back_patience)]

if train_type == ’dann’:

mobnetmodel = MobileNetV2_DANN(input_shape=((2, 80, 100),),

↪→ classifier_classes=3, descriminator_classes = 2, DANN_strength =

↪→ DANN_strength)

mobnetmodel.compile(optimizer=opt, loss=’categorical_crossentropy’,metrics

↪→ =[’accuracy’])

elif train_type== ’default’:

mobnetmodel = mobilenetv2.MobileNetV2(input_shape=((2, 80, 100),), classes

↪→ =3)

mobnetmodel.compile(optimizer=opt, loss=’categorical_crossentropy’,metrics

↪→ =[’accuracy’])

elif train_type == ’descr’:

mobnetmodel = mobilenetv2.MobileNetV2(input_shape=((2, 80, 100),), classes

↪→ =2)

mobnetmodel.compile(optimizer=opt, loss=’binary_crossentropy’,metrics=[’

↪→ accuracy’])

history = mobnetmodel.fit_generator(generator=generator(batch_size,

↪→ steps_per_epoch, df_train, model = train_type),

steps_per_epoch= steps_per_epoch,

validation_data= generator(batch_size,

↪→ val_steps_per_epoch, df_val, model =

↪→ train_type),

validation_steps= val_steps_per_epoch,

epochs=epochs,

callbacks = callbacks)

mobnetmodel.save_weights("weights_{}.h5".format(out_file_name))
history.model = None

pkl.dump(history, open("history_{}.pkl".format(out_file_name), "wb"))

return mobnetmodel, history

68

def test(weights_file, path, name, dataset_percent = 0.1, data = ’both’,

↪→ model_type = ’default’, output = ’default’):

probabilities =[]

layer_nodes = []

batch_no = 32

df_test = open_df(path, ’test_equal’)

df_test.index = range(len(df_test[’file’]))

df_test =df_test.sample(frac=1).reset_index(drop=True)

steps_per_epoch = round(len(df_test[’file’])*dataset_percent)

columns = df_test.columns

df_row = pd.DataFrame(columns = columns)

if model_type == ’default’:

model = MobileNetV2(input_shape=((2, 80, 100),), classes=3,)

elif model_type == ’descr’:

model =MobileNetV2(input_shape=((2, 80, 100),), classes=2,)

elif model_type == ’dann’:

model = MobileNetV2_DANN(input_shape=((2, 80, 100),), classifier_classes=3,

↪→ descriminator_classes = 2)

model.load_weights(’/home/ishokar/march_test/output_weights’ + weights_file)

steps = 0

for data, row_0 in islice(test_generator(1, 1, df_test, data, model_type),

↪→ steps_per_epoch):

df_row.loc[steps] = row_0

data = data.reshape((1, 2, 80, 100))

probabilities_0 = model.predict(data, steps = 1)

probabilities.append(probabilities_0)

intermediate_layer_model = Model(inputs=model.input,outputs=model.layers
↪→ [-3].output)

69

layer_nodes_0 = intermediate_layer_model.predict(data)

layer_nodes.append(layer_nodes_0)

if model_type == ’default’:

lab = df_row.loc[steps][’label’]

else:
lab = df_row.loc[steps][’label’]

print(steps,’/’, steps_per_epoch, ’:’, round((steps*100)/steps_per_epoch,

↪→ 2), ’%,’, probabilities_0[0], lab)

steps+=1

pkl.dump(layer_nodes, open(’files_new/nodes_values_{}_{}.pkl’.format(name,

↪→ weights_file[8:-3]),’wb’))

pkl.dump(probabilities, open(’files_new/test_probabilities_{}_{}.pkl’.format(
↪→ name, weights_file[8:-3]),’wb’))

pkl.dump(df_row, open(’files_new/test_df_{}_{}.pkl’.format(name, weights_file

↪→ [8:-3]),’wb’))

df2 = index_finder(probabilities, df_row)

pkl.dump(df2, open(’df_physics.pkl’,’wb’))

cuts.py

from functions import *

from methods import *

#function that applies the cuts method to a folder containing hdf5 files and

↪→ returns a dataframe

cuts(’/unix/nova/hdf5/ND-ProngCVN-FHC’)

mobilenetv2.py

from __future__ import print_function

from __future__ import absolute_import

from __future__ import division

import tensorflow as tf

import keras

from keras import backend as K, optimizers

70

from keras.engine import Layer

from keras.models import Model

from keras.layers import Input

from keras.layers import Dense

from keras.layers import Dropout

from keras.layers import Reshape

from keras.layers import Activation

from keras.layers import BatchNormalization

from keras.layers import MaxPooling2D

from keras.layers import GlobalAveragePooling2D

from keras.layers import GlobalMaxPooling2D

from keras.layers import DepthwiseConv2D

from keras.layers import Conv2D

from keras.layers import Lambda

from keras.layers import ReLU

from keras.layers import GaussianDropout

from keras.layers import add

from keras.layers import concatenate

from keras.layers import multiply

from keras.regularizers import l2

from keras.backend import get_session

###

def MobileNetV2(input_shape=None,

re_shape=(2,100,80,1),

alpha=0.25,

depth_multiplier=1,

classes=5,

weightdecay=0.0002,

jitter=0.001,

input_tensor=None):

"""MobileNetv1

This function defines a MobileNetv1 architectures.

Arguments

inputs: Inuput Tensor, e.g. an image

alpha: Width Multiplier

depth_multiplier: Resolution Multiplier

71

classes: number of labels

weightdecay: weight decay for last layer

Returns

five MobileNetv2 model stages."""

if input_tensor is None:

img_input = Input(shape=input_shape[0], name=’input’)

inputs=img_input

if jitter != 0:

img_input_jitter = GaussianDropout(jitter)(img_input)

shaped = Reshape(re_shape)(img_input_jitter)

else:
shaped = Reshape(re_shape)(img_input)

def _lambda_unstack(x):

import tensorflow as tf

return tf.unstack(x,axis=1)

shaped = Lambda(_lambda_unstack)(shaped)

img_input1 = shaped[0]

img_input2 = shaped[1]

if(re_shape[0] == 4):

img_input3 = shaped[2]

img_input4 = shaped[3]

if(re_shape[0] == 4):

img_input = [img_input1, img_input2, img_input3, img_input4]

else:
img_input = [img_input1, img_input2]

branches = []

names = [’x’,’y’,’px’,’py’]

for i in range(len(img_input)):

branch = subnet(img_input[i], names[i], alpha)

branches.append(branch)

merge = concatenate(branches)

merge = _inverted_residual_block(merge, 64, (3, 3), t=6, strides=2, n=4, alpha

↪→ =alpha, block_id=7, name=’merge’)

merge = _inverted_residual_block(merge, 96, (3, 3), t=6, strides=1, n=3, alpha

↪→ =alpha, block_id=11, name=’merge’)

merge = _inverted_residual_block(merge, 160, (3, 3), t=6, strides=2, n=3,

↪→ alpha=alpha, block_id=14, name=’merge’)

72

merge = _inverted_residual_block(merge, 320, (3, 3), t=6, strides=1, n=1,

↪→ alpha=alpha, block_id=17, name=’merge’)

merge = _conv_block(merge, 1280, alpha, (1, 1), strides=(1, 1), block_id=18,

↪→ name=’merge’)

merge = GlobalAveragePooling2D()(merge)

merge = Dropout(0.4)(merge)

merge = Dense(1024,activation=’relu’)(merge)

merge = Dropout(0.4)(merge)

out = Dense(classes,

use_bias=False,

kernel_regularizer=l2(weightdecay),

activation=’softmax’,

name=’output’)(merge)

model = Model(inputs=inputs, outputs=out, name=’mobilenetv2’)

print(model)
load weights

return model

###

def MobileNetV2_DANN(input_shape=None,

re_shape=(2,100,80,1),

DANN_strength = 0.1,

alpha=0.25,

depth_multiplier=1,

classifier_classes=3,

descriminator_classes=2,

batch_size = 32,

weightdecay=0.0002,

jitter=0.001,

input_tensor=None):

"""MobileNetv1

This function defines a MobileNetv1 architectures.

Arguments

inputs: Inuput Tensor, e.g. an image

alpha: Width Multiplier

depth_multiplier: Resolution Multiplier

73

classes: number of labels

weightdecay: weight decay for last layer

Returns

five MobileNetv2 model stages."""

if input_tensor is None:

img_input = Input(shape=input_shape[0], name=’input’)

inputs=img_input

if jitter != 0:

img_input_jitter = GaussianDropout(jitter)(img_input)

shaped = Reshape(re_shape)(img_input_jitter)

else:
shaped = Reshape(re_shape)(img_input)

def _lambda_unstack(x):

import tensorflow as tf

return tf.unstack(x,axis=1)

shaped = Lambda(_lambda_unstack)(shaped)

img_input1 = shaped[0]

img_input2 = shaped[1]

if(re_shape[0] == 4):

img_input3 = shaped[2]

img_input4 = shaped[3]

if(re_shape[0] == 4):

img_input = [img_input1, img_input2, img_input3, img_input4]

else:
img_input = [img_input1, img_input2]

branches = []

names = [’x’,’y’,’px’,’py’]

for i in range(len(img_input)):

branch = subnet(img_input[i], names[i], alpha)

branches.append(branch)

merge = concatenate(branches)

merge = _inverted_residual_block(merge, 64, (3, 3), t=6, strides=2, n=4, alpha

↪→ =alpha, block_id=7, name=’merge’)

merge = _inverted_residual_block(merge, 96, (3, 3), t=6, strides=1, n=3, alpha

↪→ =alpha, block_id=11, name=’merge’)

merge = _inverted_residual_block(merge, 160, (3, 3), t=6, strides=2, n=3,

↪→ alpha=alpha, block_id=14, name=’merge’)

74

merge = _inverted_residual_block(merge, 320, (3, 3), t=6, strides=1, n=1,

↪→ alpha=alpha, block_id=17, name=’merge’)

merge = _conv_block(merge, 1280, alpha, (1, 1), strides=(1, 1), block_id=18,

↪→ name=’merge’)

av_pool = GlobalAveragePooling2D()(merge)

merge = Dropout(0.4)(av_pool)

merge = Dense(1024,activation=’relu’)(merge)

merge = Dropout(0.4)(merge)

#insert discriminator

grl_layer = GradientReversal(1.0)

feature_output_grl = grl_layer(av_pool)

labeled_feature_output = Lambda(lambda x: K.switch(K.variable(1), K.

↪→ concatenate([x[:int(batch_size//2)], x[:int(batch_size//2)]], axis=0), x

↪→), output_shape=lambda x: x[0:])(feature_output_grl)

out = Dropout(0.5)(labeled_feature_output)

out = Dense(128, activation="relu")(out)

out = Dropout(0.5)(out)

discriminator_output = Dense(descriminator_classes, activation="softmax", name

↪→ ="discriminator_output")(out)

classifier_output = Dense(classifier_classes,

use_bias=False,

kernel_regularizer=l2(weightdecay),

activation=’softmax’,

name=’output’)(merge)

model = Model(inputs=inputs, outputs=[classifier_output, discriminator_output],

↪→ name=’mobilenetv2’)

print(model)

return model

75

GRADIENT REVERSAL BLOCK

↪→ ##

def reverse_gradient(X, hp_lambda):

’’’Flips the sign of the incoming gradient during training.’’’

try:
reverse_gradient.num_calls += 1

except AttributeError:

reverse_gradient.num_calls = 1

grad_name = "GradientReversal%d" % reverse_gradient.num_calls

@tf.RegisterGradient(grad_name)

def _flip_gradients(op, grad):

return [tf.negative(grad) *0.5* hp_lambda]

g = get_session().graph

with g.gradient_override_map({’Identity’: grad_name}):

y = tf.identity(X)

return y

class GradientReversal(Layer):

’’’Flip the sign of gradient during training.’’’

def __init__(self, hp_lambda, **kwargs):

super(GradientReversal, self).__init__(**kwargs)

self.supports_masking = False

self.hp_lambda = hp_lambda

def build(self, input_shape):

self.trainable_weights = []

def call(self, x, mask=None):

return reverse_gradient(x, self.hp_lambda)

def get_output_shape_for(self, input_shape):

return input_shape

def get_config(self):

config = {}

base_config = super(GradientReversal, self).get_config()

76

return dict(list(base_config.items()) + list(config.items()))

#

↪→ ###

↪→

def _conv_block(inputs, filters, alpha, kernel=(3, 3), strides=(1, 1), block_id=1,

↪→ name=’’):

"""Adds an initial convolution layer (with batch normalization and relu6).

Arguments

inputs: Input tensor of shape ‘(rows, cols, chans)‘

(with ‘channels_last‘ data format) or

(chans, rows, cols) (with ‘channels_first‘ data format).

It should have exactly 3 inputs channels,

and width and height should be no smaller than 32.

E.g. ‘(224, 224, 3)‘ would be one valid value.

filters: Integer, the dimensionality of the output space

(i.e. the number output of filters in the convolution).

alpha: controls the width of the network.

- If ‘alpha‘ < 1.0, proportionally decreases the number

of filters in each layer.

- If ‘alpha‘ > 1.0, proportionally increases the number

of filters in each layer.

- If ‘alpha‘ = 1, default number of filters from the paper

are used at each layer.

kernel: An integer or tuple/list of 2 integers, specifying the

width and height of the 2D convolution window.

Can be a single integer to specify the same value for

all spatial dimensions.

strides: An integer or tuple/list of 2 integers,

specifying the strides of the convolution along the width and height.

Can be a single integer to specify the same value for

all spatial dimensions.

Specifying any stride value != 1 is incompatible with specifying

any ‘dilation_rate‘ value != 1.

Input shape

4D tensor with shape:

‘(samples, channels, rows, cols)‘ if data_format=’channels_first’

or 4D tensor with shape:

‘(samples, rows, cols, channels)‘ if data_format=’channels_last’.

77

Output shape

4D tensor with shape:

‘(samples, filters, new_rows, new_cols)‘ if data_format=’channels_first’

or 4D tensor with shape:

‘(samples, new_rows, new_cols, filters)‘ if data_format=’channels_last’.

‘rows‘ and ‘cols‘ values might have changed due to stride.

Returns

Output tensor of block.

"""

channel_axis = 1 if K.image_data_format() == ’channels_first’ else -1

filters = int(filters * alpha)

x = Conv2D(filters, kernel,

padding=’same’,

use_bias=False,

strides=strides,

name=name+’conv{}’.format(block_id))(inputs)
x = BatchNormalization(axis=channel_axis, name=name+’conv{}_bn’.format(

↪→ block_id))(x)

return ReLU(6, name=name+’conv{}_relu’.format(block_id))(x)

def _bottleneck(inputs, filters, kernel, t, s, r=False, alpha=1.0, block_id=1,

↪→ train_bn = False, name=’’):

"""Bottleneck

This function defines a basic bottleneck structure.

Arguments

inputs: Tensor, input tensor of conv layer.

filters: Integer, the dimensionality of the output space.

kernel: An integer or tuple/list of 2 integers, specifying the

width and height of the 2D convolution window.

t: Integer, expansion factor.

t is always applied to the input size.

s: An integer or tuple/list of 2 integers,specifying the strides

of the convolution along the width and height.Can be a single

integer to specify the same value for all spatial dimensions.

r: Boolean, Whether to use the residuals.

Returns

Output tensor.

"""

channel_axis = 1 if K.image_data_format() == ’channels_first’ else -1

tchannel = K.int_shape(inputs)[channel_axis] * t

filters = int(alpha * filters)

78

x = _conv_block(inputs, tchannel, alpha, (1, 1), (1, 1),block_id=block_id,

↪→ name=name)

x = DepthwiseConv2D(kernel,

strides=(s, s),

depth_multiplier=1,

padding=’same’,

name=name+’conv_dw_{}’.format(block_id))(x)
x = BatchNormalization(axis=channel_axis,name=name+’conv_dw_{}_bn’.format(

↪→ block_id))(x)

x = ReLU(6, name=name+’conv_dw_{}_relu’.format(block_id))(x)

x = Conv2D(filters,

(1, 1),

strides=(1, 1),

padding=’same’,

name=name+’conv_pw_{}’.format(block_id))(x)
x = BatchNormalization(axis=channel_axis, name=name+’conv_pw_{}_bn’.format(

↪→ block_id))(x, training=train_bn)

if r:

x = add([x, inputs], name=name+’res{}’.format(block_id))
return x

def _inverted_residual_block(inputs, filters, kernel, t, strides, n, alpha,

↪→ block_id, name=’’):

"""Inverted Residual Block

This function defines a sequence of 1 or more identical layers.

Arguments

inputs: Tensor, input tensor of conv layer.

filters: Integer, the dimensionality of the output space.

kernel: An integer or tuple/list of 2 integers, specifying the

width and height of the 2D convolution window.

t: Integer, expansion factor.

t is always applied to the input size.

s: An integer or tuple/list of 2 integers,specifying the strides

of the convolution along the width and height.Can be a single

integer to specify the same value for all spatial dimensions.

n: Integer, layer repeat times.

Returns

Output tensor.

"""

x = _bottleneck(inputs, filters, kernel, t, strides, False, alpha, block_id,

↪→ name=name)

79

for i in range(1, n):

block_id += 1

x = _bottleneck(x, filters, kernel, t, 1, True, alpha, block_id, name=name)

return x

def subnet(x, name, alpha):

x = _conv_block(x, 32, alpha, (3, 3), strides=(2, 2), block_id=0, name=name)

x = _inverted_residual_block(x, 16, (3, 3), t=1, strides=1, n=1, alpha=alpha,

↪→ block_id=1, name=name)

x = _inverted_residual_block(x, 24, (3, 3), t=6, strides=2, n=2, alpha=alpha,

↪→ block_id=2, name=name)

x = _inverted_residual_block(x, 32, (3, 3), t=6, strides=2, n=3, alpha=alpha,

↪→ block_id=4, name=name)

return x

train.py

from methods import *

model_optimiser options: ’Adam’, ’SGD’

train(train_type = ’dann’,

epochs= 100,

batch_size = 32,

dataset_percent = 0.9,

call_back_patience = 10,

learning_rate = 0.001,

DANN_strength = 0.1,

model_optimiser=’Adam’,

out_file_name = ’32_Adam_dann_0.5_02_03’)

test.py

from methods import *

#function paramemters

path = ’/home/ishokar/dataframes/’

80

data = ’both’

model_type = ’descr’

output = ’default’

file= ’/weights_train_100_descr_32_sgd_22_02.h5’

file_name = ’default_TOboth_equal_1’

dataset_percent = 0.001

test(file, path, file_name, dataset_percent, data, model_type, output)

analysis.py

from functions import *

from methods import *

import seaborn as sns

import matplotlib.pyplot as plt

import pickle as pkl

import matplotlib.pyplot as plt

from sklearn import metrics

def plot_history(path, file):

with open(path + file,’rb’) as f1:

history = pkl.load(f1)

fig = plt.figure(figsize=(16,8))

ax1 = fig.add_axes([0, 0, 1, 1])

ax2 = fig.add_axes()

ax2 = ax1.twinx()

lns1 = ax1.plot(history.history[’loss’][:100], color=’red’, label=’loss’)

lns2 = ax1.plot(history.history[’val_loss’][:100], color=’green’, label=’

↪→ val_loss’)

lns3 = ax2.plot(history.history[’accuracy’][:100], color=’blue’, label=’

↪→ accuracy’)

81

lns4 = ax2.plot(history.history[’val_accuracy’][:100], color=’orange’, label=’

↪→ val_accuracy’)

leg = lns1 + lns2 + lns3 + lns4

labs = [l.get_label() for l in leg]

ax1.legend(leg, labs, loc=’upper␣left’)

plt.title(’’, fontsize=20)

plt.rcParams.update({’font.size’: 14})

ax1.set_ylim(0.0, 5)

ax1.set_ylabel(’loss’)

ax2.set_ylim(0.1, 0.85)

ax2.set_ylabel(’accuracy’)

ax1.set_xlabel(’epochs’)

plt.show()

def test_results(path, model_name):

with open(path+ ’test_probabilities__{.format(model_name)}.pkl’.format(
↪→ model_name),’rb’) as f1:

probabilities = pkl.load(f1)

with open(path+ ’test_df__{}.pkl’.format(model_name),’rb’) as f2:

df = pkl.load(f2)

with open(path+ ’df_physics_{}.pkl.format(model_name)’,’rb’) as f3:

physics_df = pkl.load(f3)

with open(path+ ’nodes_values_default_{}.pkl’.format(model_name),’rb’) as f4:

node_values = pkl.load(f4)

return probabilities, df, physics_df, node_values

def unpack_df():

labels = list(df[’label’])
gibuu_weights = list(df[’weight’])

82

events = np.zeros((len(df[’file’]), 2))

for i in range(len(df[’file’])):
if ’_genie_’ in str(df[’file’][i]):

events[i] = [1, 0]

elif ’gibuu’ in str(df[’file’][i]):
events[i] = [0, 1]

def sub(x):

return x-1

test_vals = list(map(sub, labels))

return labels, gibuu_weights, events, test_vals

def predictions():

predictions = []

for i in probabilities:

nc = i[0][0]

nu_e = i[0][1]

nu_mu = i[0][2]

if nc>= nu_e and nc>=nu_mu:

predictions.append(0)

elif nu_e>= nc and nu_e>=nu_mu:

predictions.append(1)

elif nu_mu>= nu_e and nu_mu>=nc:

predictions.append(2)

#accuracy

acc = 0

for i in range(len(probabilities)):

if test_vals[i]==predictions[i]:

acc+=1

else:

pass

acc/=len(test_vals)

83

print(’Accuracy:{}␣\n’.format(acc))

#printing first 10 events to check data

print(’Probabilities:␣\n’)
for i in range(10):

print(probabilities[i], ’\n’)

print(’Predictions:␣\n’)
print(predictions[:10], ’\n’)

print(’Truth␣labels:␣\n’)
print(test_vals[:10])

return predictions

def event_hist(data, data_type):

data_type options: test_vals, predictions

plt.figure(figsize=(12,6))

plt.hist(data)

x = [0.1, 1.1, 1.9]

class_names = [’nc’, ’nu_e’, ’nu_mu’]

plt.xticks(x, class_names)

plt.ylabel(’Count’)

if data_type== ’test_vals’:

plt.title(’MC␣Truth␣Classes’)

elif data_type== ’predictions’:

plt.title(’Predicited␣Classes’)

def classifier_output(probabilities, interaction) :

if interaction == ’nc’:

index = 0

elif interaction == ’nu_e’:

index = 1

elif interaction == ’nu_mu’:

index = 2

84

mu_e = []

nc = []

nu_mu = []

for i in range(len(probabilities)):
if test_vals[i] ==0 :

nc.append(probabilities[i][0][index])

elif test_vals[i] ==1:

mu_e.append(probabilities[i][0][index])

elif test_vals[i] ==2:

nu_mu.append(probabilities[i][0][index])

plt.figure(figsize=(25,10))

factor = 1/(len(test_vals))

(counts, bins) = np.histogram(nc, bins=100)

plt.hist(bins[:-1], bins, weights=factor*counts, histtype=’step’, fill=False,

↪→ linestyle=(’solid’),color=(’b’))

(counts, bins) = np.histogram(mu_e, bins=100)

plt.hist(bins[:-1], bins, weights=factor*counts, histtype=’step’, fill=False,

↪→ linestyle=(’solid’),color=(’orange’))

(counts, bins) = np.histogram(nu_mu, bins=100)

plt.hist(bins[:-1], bins, weights=factor*counts, histtype=’step’, fill=False,

↪→ linestyle=(’solid’),color=(’g’))

plt.legend([’nc’, ’nu_e’,’nu_mu’], loc=’upper␣left’)

plt.ylabel(’Percentage␣of␣test␣events’)

plt.xlim(0,1)

plt.xlabel(’{}␣classifer␣Output’.format(interaction))

def purity_efficiency(probabilites, interaction):

if interaction == ’nc’:

index = 0

elif interaction == ’nu_e’:

85

index = 1

elif interaction == ’nu_mu’:

index = 2

purity_list = []

efficiency_list = []

p_x_e_list = []

for j in np.arange(0, 0.99, 0.01):

nu_mu_above = []

nu_mu_below = []

nc_above = []

nc_below = []

nu_e_above = []

nu_e_below = []

for i in range(len(probabilities)):
if test_vals[i] ==2:

if probabilities[i][0][index]>=j:

nu_mu_above.append(probabilities[i][0][index]*gibuu_weights[i])

elif probabilities[i][0][index]<=j:

nu_mu_below.append(probabilities[i][0][index]*gibuu_weights[i])

elif test_vals[i] ==0:

if probabilities[i][0][index]>=j:

nc_above.append(probabilities[i][0][index]*gibuu_weights[i])

elif probabilities[i][0][index]<=j:

nc_below.append(probabilities[i][0][index]*gibuu_weights[i])

elif test_vals[i] ==1:

if probabilities[i][0][index]>=j:

nu_e_above.append(probabilities[i][0][index]*gibuu_weights[i])

elif probabilities[i][0][index]<=j:

nu_e_below.append(probabilities[i][0][index]*gibuu_weights[i])

if interaction == ’nc’:

purity = len(nc_above)/(len(nc_above)+len(nu_mu_above)+len(nu_e_above))

efficiency = len(nc_above)/(len(nc_above)+len(nc_below))

elif interaction == ’nu_e’:

86

purity = len(nu_e_above)/(len(nc_above)+len(nu_mu_above)+len(nu_e_above

↪→))

efficiency = len(nu_e_above)/(len(nu_e_above)+len(nu_e_below))

elif interaction == ’nu_mu’:

purity = len(nu_mu_above)/(len(nc_above)+len(nu_mu_above)+len(
↪→ nu_e_above))

efficiency = len(nu_mu_above)/(len(nu_mu_above)+len(nu_mu_below))

purity_list.append(purity*100)

efficiency_list.append(efficiency*100)

p_x_e_list.append(purity*efficiency*100)

plt.figure(figsize=(25,10))

plt.plot(purity_list)

plt.plot(efficiency_list)

plt.plot(p_x_e_list)

plt.xlabel(’{}␣classifer␣Output␣Percentage’.format(interaction))
plt.ylabel(’Percentage’)

plt.legend([’Purity’, ’Efficiency’, ’Purity*␣Efficiency’], loc=’lower␣left’)

def roc(probabilities, test_vals):

pr_nc = []

pr_nu_e = []

pr_nu_mu = []

for i in range(len(probabilities)):

pr_nc.append(probabilities[i][0][0])

pr_nu_e.append(probabilities[i][0][1])

pr_nu_mu.append(probabilities[i][0][2])

nc_fpr, nc_tpr, nc_thresholds = metrics.roc_curve(test_vals, pr_nc, pos_label

↪→ =0)

nu_e_fpr, nu_e_tpr, nu_e_thresholds = metrics.roc_curve(test_vals, pr_nu_e,

↪→ pos_label=1)

nu_mu_fpr, nu_mu_tpr, nu_mu_thresholds = metrics.roc_curve(test_vals, pr_nu_mu,

↪→ pos_label=2)

plt.figure(figsize=(10,10))

87

plt.plot(nc_fpr, nc_tpr, label = ’NC’)

plt.plot(nu_e_fpr, nu_e_tpr, label = ’Nu␣E’)

plt.plot(nu_mu_fpr, nu_mu_tpr, label = ’Nu␣Mu’)

plt.legend([’NC’, ’Nu␣E’, ’Nu␣Mu’,], loc=’upper␣left’)

plt.xlabel(’False␣positive␣rate’)

plt.ylabel(’True␣positive␣rate’)

plt.title(’ROC␣curve’)

plt.plot([0,1], [0,1], ’--’)

def node_event(node):

bins = 20

nc_genie = []

nc_gibuu = []

nu_e_genie = []

nu_e_gibuu = []

nu_mu_genie = []

nu_mu_gibuu = []

for i in range(len(events)):
if test_vals[i] == 0 and events[i][0] == 1:

nc_genie.append(node_values[i][0][node])

elif test_vals[i] == 0 and events[i][1] == 1:

nc_gibuu.append(node_values[i][0][node])

elif test_vals[i] == 1 and events[i][0] == 1:

nu_e_genie.append(node_values[i][0][node])

elif test_vals[i] == 1 and events[i][1] == 1:

nu_e_gibuu.append(node_values[i][0][node])

elif test_vals[i] == 2 and events[i][0] == 1:

nu_mu_genie.append(node_values[i][0][node])

elif test_vals[i] == 2 and events[i][1] == 1:

nu_mu_gibuu.append(node_values[i][0][node])

dataset_ = [nc_genie, nc_gibuu, nu_e_genie, nu_e_gibuu, nu_mu_genie,

↪→ nu_mu_gibuu]

label = [’nc_genie’, ’nc_gibuu’, ’nu_e_genie’, ’nu_e_gibuu’, ’nu_mu_genie’, ’

↪→ nu_mu_gibuu’]

plt.figure(figsize=(8,5))

(counts, bins) = np.histogram(nc_genie, bins=bins)

factor = 1/(len(nc_genie))

88

plt.hist(bins[:-1], bins, weights=factor*counts, histtype=’step’, fill=False,

↪→ label=’nc_genie’, linestyle=(’solid’),color=(’g’))

(counts, bins) = np.histogram(nc_gibuu, bins=bins)

factor = 1/(len(nc_gibuu))

plt.hist(bins[:-1], bins, weights=factor*counts, histtype=’step’, fill=False,

↪→ label=’nc_gibuu’, linestyle=(’dashed’),color=(’g’))

(counts, bins) = np.histogram(nu_e_genie, bins=bins)

factor = 1/(len(nu_e_genie))

plt.hist(bins[:-1], bins, weights=factor*counts, histtype=’step’, fill=False,

↪→ label=’nu_e_genie’, linestyle=(’solid’),color=(’r’))

(counts, bins) = np.histogram(nu_e_gibuu, bins=bins)

factor = 1/(len(nu_e_gibuu))
plt.hist(bins[:-1], bins, weights=factor*counts, histtype=’step’, fill=False,

↪→ label=’nu_e_gibuu’, linestyle=(’dashed’),color=(’r’))

(counts, bins) = np.histogram(nu_mu_genie, bins=bins)

factor = 1/(len(nu_mu_genie))
plt.hist(bins[:-1], bins, weights=factor*counts, histtype=’step’, fill=False,

↪→ label=’nu_mu_genie’, linestyle=(’solid’),color=(’b’))

(counts, bins) = np.histogram(nu_mu_gibuu, bins=bins)

factor = 1/(len(nu_mu_gibuu))
plt.hist(bins[:-1], bins, weights=factor*counts, histtype=’step’, fill=False,

↪→ label=’nu_mu_gibuu’, linestyle=(’dashed’),color=(’b’))

plt.title(’Node␣Number␣{}’.format(node))

plt.legend(prop={’size’: 10})

plt.xlabel(’Node␣Value’)

plt.ylabel(’Percentage␣of␣Data’)

plt.xlim(0.05,1)

plt.ylim(0,0.2)

def node_pe(node):

for j in np.arange(0, 0.25, 0.01):

purity_list = []

efficiency_list = []

89

p_x_e_list = []

nu_mu_above = []

nu_mu_below = []

nc_above = []

nc_below = []

nu_e_above = []

nu_e_below = []

for i in range(len(probabilities)):
if test_vals[i] ==2:

if probabilities[i][0][1]>=j:

nu_mu_above.append(node_values[i][0][node])

elif probabilities[i][0][1]<=j:

nu_mu_below.append(node_values[i][0][node])

elif test_vals[i] ==0:

if probabilities[i][0][1]>=j:

nc_above.append(node_values[i][0][node])

elif probabilities[i][0][1]<=j:

nc_below.append(node_values[i][0][node])

elif test_vals[i] ==1:

if probabilities[i][0][1]>=j:

nu_e_above.append(node_values[i][0][node])

elif probabilities[i][0][1]<=j:

nu_e_below.append(node_values[i][0][node])

purity = len(nu_e_above)/(len(nc_above)+len(nu_mu_above)+len(nu_e_above))

purity_list.append(purity)

efficiency = len(nu_e_above)/(len(nu_e_above)+len(nu_e_below))
efficiency_list.append(efficiency)

p_x_e_list.append(purity*efficiency)

fig = plt.figure(figsize=(20,10))

plt.plot(purity_list)

plt.plot(efficiency_list)

plt.plot(p_x_e_list)

plt.xlabel(’Nu␣Mu␣classifer␣Output’)

90

plt.ylabel(’Percentage’)

plt.title(’Trained␣and␣Tested␣on␣Both␣Datasets’)

plt.legend([’Purity’, ’Efficiency’, ’Purity*␣Efficiency’], loc=’lower␣left’)

def domain_physics(text, bins):

plt.figure(figsize=(18,10))

(counts, bins) = np.histogram(df2[text], bins=bins)

factor = 1/(len(df2[text]))
plt.hist(bins[:-1], bins, weights=factor*counts, histtype=’step’, fill=False,

↪→ label=’Gibuu<0.2’)

(counts, bins) = np.histogram(df3[text], bins=bins)

factor = 1/(len(df3[text]))
plt.hist(bins[:-1], bins, weights=factor*counts, histtype=’step’, fill=False,

↪→ label= ’Genie<0.2’)

(counts, bins) = np.histogram(df4[text], bins=bins)

factor = 1/(len(df4[text]))
plt.hist(bins[:-1], bins, weights=factor*counts, histtype=’step’, fill=False,

↪→ label=’0.4<Gibuu<0.7’)

plt.legend(prop={’size’: 14})

plt.ylabel(’Percentage␣of␣Data’)

plt.xlabel(text)

plt.show()

91

	Introduction
	Neutrino Research
	NOvA Experiment
	Machine Learning
	Convolutional Neural Networks
	Robustness
	Domain Adversarial Neural Networks

	Method
	Software
	Training data
	Models
	Generator Method
	Hyperarameters
	Data Imbalance
	Computational Expense
	Discriminator Network
	Domain Adversarial Training

	Results
	Model Classification
	Training on GENIE Dataset
	Training on a balanced GENIE Dataset
	Training on a balanced GENIE Dataset and evaluated on GiBUU Data
	Training on both GENIE and GiBUU Data
	Network Interpretability

	Domain Classification
	Domain Adversarial Training

	Conclusions
	Model Classification
	Future Work

