
Data-Driven Exploration of

Mid-Latitude Weather

I. J. S. Shokar

Supervisors: Prof. P. H. Haynes FRS

Prof. R. R. Kerswell FRS

Centre for Doctoral Training in the Application of Artificial Intelligence to

the study of Environmental Risks

University of Cambridge

MRes Research Project Report

Pembroke College July 2021

Declaration

This report is the result of my own work and includes nothing which is the outcome of work

done in collaboration, except where specifically indicated in the text and/or bibliography.

I. J. S. Shokar

July 2021

Abstract

In this project we looked at producing data-based reduced order modelling of a fluid dy-

namical system, that provides an analogue for mid-latitude weather, leveraging the fact that

solutions often collapse onto a finite-dimensional manifold. This project used deep learning

methods to produce mappings to the lower-dimensional representations of the system and

evolve the system in this latent space. Previous research has used such methods on deter-

ministic systems, however this project looked at trying to find this reduced order modelling

scheme for a stochastically forced system.

Attempts to make times series predictions of the dynamics opened up questions regarding

the time variability of a scholastically forced system. An exploration of how the system

responded to changes in initial conditions as well as different realisations of the forcing

was conducted to determine the system response when in different states. Here we looked

at determining and quantifying the stability of these states in an attempt to understand the

fundamental predictability of the system.

Table of contents

1 Introduction 1

1.1 Machine Learning for Climate Science . 1

1.2 Mid-latitude Idealised Model . 2

1.3 Manifold Learning . 5

2 Methodology & Results 7

2.1 Autoencoder . 7

2.2 Time Series Evolution . 14

2.3 Predictability . 18

3 Conclusion 25

References 27

Appendix A 29

A.1 Autoencoder . 29

A.2 Feed Forward Neural Network for Time Evolution 31

A.3 LSTM . 31

A.4 Diffusion Prediction Neural Network . 33

Chapter 1

Introduction

1.1 Machine Learning for Climate Science

Climate and weather foresting has developed significantly with the increase in data available

[1], however the models of the ocean and atmospheric dynamics, namely Global Circula-

tion Models (GCMs) [2] that are used to produce these predictions are very complex and

computationally expensive, resulting in many needing to be run on some of the world’s

largest supercomputers [3]. Data-driven techniques, such as machine learning provide an

excellent opportunity to improve our understanding of these models and hence evaluate their

usefulness. Machine learning, broadly describes a array of methods that are well suited to

tasks such as pattern recognition, regression, and encapsulating the time-evolution of systems

[4]. Deep learning, a branch of machine learning, has many powerful implications, arising

from their ability to fit a series of non-linear functions to incoming data in order to capture

complex structure [4].

Due to the computational cost of GMCs, not all scales can be simulated, with processes

that take place on scales smaller than the spacial resolution of the GCM, as well as fast scale

dynamics, having to be approximated, with these approximations known as sub-grid parame-

terisations. This raises questions over which physical processes are important in maintaining

2 Introduction

the fidelity of these models. Machine learning has the potential to be used for predicating

future states of weather and climate systems, which can provide both improved forecasting,

as well as for the emulation of the physical phenomena that are being parameterised.

High Reynolds number flows such as dynamics in the atmosphere are characterised as

turbulent flow and as a result can be described as chaotic systems [5] - a system highly

dependent on initial conditions. Subsequently, any incorrect assumptions made during

the parameterisation schemes may result in very large errors in predictions. Often, this

is accounted for by using an ensemble of predictions, however this simply results in a

distribution of incorrect forecasts. Better understanding as well as modelling of these

processes may lead to more accurate and reliable forecasts of weather and climate, as well as

better quantification of the uncertainty from these models.

1.2 Mid-latitude Idealised Model

Due to the complexity of GCMs, exploring individual components of the model, which will

describe the underlying physics, is not possible. As such we will use a simplified ’toy’ model,

which allows for exploring the fundamental physics of the system in isolation, as well as

being able to produce numerical integrations of our model much faster and using orders of

magnitude less expensive hardware than that required to run a GCM.

This project considered a simple model, formulated by [6], that provides a useful analogue

for week-to-week variations in mid-latitude circulation- the system that describes European

weather.

In developing the model a number of simplifications were made, the first of which is that

planetary atmospheres and oceans can be considered as shallow fluid layers on a rotating

sphere, a consequence of their large horizontal extent compared with their depth. This

quasi-two-dimensional nature of planetary scale motions gives rise to dynamics of interest,

including the formation of jet streams and cyclones.

1.2 Mid-latitude Idealised Model 3

Fig. 1.1 An example latitude-time plot of the system displaying the values of ū over y over
a period of 1000 observable time steps displaying merging and nucleating behaviour. The
colour bar indicates the value of ū.

This project will focus on the modelling of the atmospheric jets. Understanding how

atmospheric jet streams change as concentrations of greenhouse gases increase is very im-

portant in understanding implications of climate change for regional weather patterns. Jets,

which act like fast-moving rivers, play a fundamental role in the climate system, trans-

porting geophysically-important quantities, such as momentum, heat and tracers, including

chemically and thermodynamically important quantities such as ozone and waver vapour [6].

With geophysical dynamics primarily characterised by planetary rotation and stratifica-

tion, if one is to neglect stratification in the form of a single layer model, the effects of rotation

are left to be defined by the Coriolis parameter f = 2Ωsin(θ) varies with latitude θ , where Ω

is the angular velocity of the rotating body. This can be approximated by a first-order Taylor

expansion with a constant latitudinal gradient beta, β = (2Ω/a)cos(θ0) close to latitude θ0

on a rotating body of radius a, reducing the model to a beta-plane approximation [7].

This two-dimensional system displays no intrinsic turbulence due to a lack of dynamical

instabilities such as baroclinic instability which inherently posses an eddy-generating mecha-

nism. Turbulence is defined as non-closing bounded orbits in phase space, which cannot exist

in a two-dimensional system in the limit limt→∞. To generate turbulence in this non-stratified

system it must be artificially forced, which is achieved through a stochastic vorticity forcing

function, ξ (x, t), which parametersises small-scale eddies. The forcing assumed to be a

4 Introduction

random function of both space and time, in which energy is injected homogeneously and

isotropically at a constant rate ε .

Energy is predominantly dissipated using linear damping with rate, µ , modelling for

example Ekman friction in planetary atmospheres. In order to impose the simplest possible

boundary conditions, doubly periodic boundary conditions are imposed on our domain with

(x,y) ∈ [0,2πLD]x[0,2πLD] with LD the length of the domain equal to 256. This leads to the

two-dimensional beta-plane vorticity equation being:

∂ζ

∂ t
+ J(ψ,ζ)+β

∂ψ

∂x
= ξ −µζ + vn∇

2n
ζ (1.1)

for a relative vorticity ζ = ∇2ψ , potential vorticity q = ζ + f velocity field (u,v) =

(∂yψ,∂xψ) and J is the determineant of the Jacobian. A more detailed explanation of this

can be found in [6].

In this project we only considered the dynamical variability as latitude, y, changes as

a function of time, resulting in averaging over x to produce ū = 1
LD

LD
∑

x=0
ux, the zonal mean

velocity field. This reduces the domain to one-dimention, y, and allows for latitude-time

plots to be plotted, an example of which can be seen in figure 1.1.

Within this simple framework, we seek to explore jet stream dynamics and, in particular,

variability. Equilibrated jet streams are inherently unstable, and a question arises concerning

their time variability. They exhibit a multitude of types of variability, including latitudinal

shifts, strength changes and jet mergers [8], [9]. It is anticipated that the stochastic forcing

plays a large role in the system variability. By looking at various states of the system we can

observe the potential impact the forcing has on the system. In figure 1.1 between t = 250

and t = 300 the quasi-stable two-jet state can be seen to drift northwards, and this example

of a random wandering of the jets is very likely driven by the stochastic forcing analogous to

a random walk. An example of a jet nucleation can be seen at t ≈ 370 at the bottom of the

figure, before a merging event can be seen at t ≈ 500. It cannot be determined how influential

1.3 Manifold Learning 5

the forcing is on these events, as the change in state could be a consequence of an excitation

from one basin of the attractor to another caused by the forcing, however this behaviour also

shows similarity to deterministic chaos, with the trajectories in phase space transitioning

between unstable solutions [10].

1.3 Manifold Learning

In order to try and learn the dynamics of this system, a method for extracting this information

from data is required. With a very number of high degrees of freedom being required to

accurately obtain approximate solutions to Partial Differential Equations (PDEs), this is a

very computationally expensive task. To overcome this we look to produce a reduced order

representation of the system, in which all the key dynamical variables are encapsulated within

a latent space encoding of the system. Here we are looking to make an assumption that our

system’s dynamics lie on an internal manifold embedded in a higher-dimensional space.

Here we propose that state u lies on some manifold M, u∈M, that is embedded in some D

dimensional space. We look to find a coordinate mapping onto M to find a corresponding set

of coordinates h that are of DM dimensions, where D >> DM. This transformation h = E(u)

can be represented using a neural network (NN). In this project undercomplete autoencoder

[11], a supervised learning architecture, was chosen as the model to learn this mapping as it

acts as an information-filtering bottleneck, processing data down to a lower dimension before

mapping back to try and recreate the output despite the bandwidth constraint. This will be

discussed in further detail in section 2.1.

There are several methods that are used for dimensional reduction; these include Principle

Component Analysis (PCA) and Proper Orthogonal Decomposition (POD). In this project we

explored the use of the undercomplete autoencoder [11]. The two aforementioned methods

have previously been shown to fail in representing low-order dynamics with a turbulent

systems [12]. Given that NNs are combinations of non-linear functions, the autoencoder is

6 Introduction

a more appropriate method for dimentionality reduction than those previously mentioned

given they are linear, and the system of interest being characterised by a non-linearity.

Other studies, chiefly [13] have looked at extracting governing equations from data. This

is very useful for domains, where large volumes are available, which includes the climate

sciences, however future predictions made from these generated governing equations can

suffer from the same problem as GCMs which due to their complexity, are computationally

expensive to evolve in time. The method that is explored in this project, that is encapsulating

the dynamics within a neural network structure had a number of benefits over this method as

it is able to provide a vast computation speed up when predictions are to be made due to the

very fast inference time of neural networks.

Other approaches similar to the method used in this project include using dimentionality

reduction to represent turbulent systems include coupling an autoencoder with a Convolu-

tional Neural network (CNN) to find the underlying invariant solutions through a method of la-

tent Fourier analysis [12], as well as using an autoencoder and a corresponding time-evolution

network to encapsulate the system on a manifold, exploiting translation symmetry in the

representation [14]. Both of these studies looked at the deterministic Kuramoto–Sivashinsky

equation on a periodic domain, whereas the system outlined above is stochastically forced,

leading to questions over whether the Stochastic Differential Equations (SDEs) that govern

the dynamics change this internal manifold and the evolution of dynamics on it.

Chapter 2

Methodology & Results

2.1 Autoencoder

To see if the system we are using lies on a lower dimensional manifold, an undercomplete

autoencoder was used for non-linear dimentionality reduction. Autoencoders are a form of

supervised learning where during the training process the network learns how to reconstruct

the inputs using a neural network that contains a bottleneck layer. This bottleneck reduces the

number of variables that can represent the input data, which leads to a learned representation

of the data where the information is encapsulated using a smaller number of variables. A

schematic of the autoencoder architecture can be seen in figure 2.1.

An autoencoder is made up of two parts, an encoder and a corresponding decoder. The

encoder represents a transformation h = E(u) from out input space to the manifold space,

where u is our input of dimension D, while the decoder u’ = D(h) represents the inverse,

such that:

u’ = D(E(u)) (2.1)

where u’ is the reconstructed output h represents our latent space embedding, with the size

of this vector, determined by the of neurons in that layer in the mode, corresponding to

8 Methodology & Results

Fig. 2.1 An example architecture of an autoencoder neural network [15].

the number of variables that can describe our system in the reduced scheme and thus the

dimensionality of this space, DM.

Network Training

The inputs to the network are a single time-slice of the ū over y, which is a vector of shape

256. The target outputs of the network are the same as the inputs and the training process

attempts to determine these transformation mappings such that the difference between the

left-hand-side and the right-hand-side of equation 2.1 is as close to zero as possible. This

difference is calculated by a loss function, and the choice here was the Root Mean Squared

Error (RMSE) between the LHS and RHS of equation 2.1, defined as:

RMSE =
D

∑
i=0

√
(ūi

′− ūi)2 (2.2)

where ūi
′ = D(E(ūi)). Each neuron is connected to every neuron in the following layer, with

each connection scaled by a coefficient, or weight, w, and shifted by a bias, b. At each neuron

an activation function, σ , is applied. This allows for the stacking of non-linear functions

2.1 Autoencoder 9

Layer Number of Neurons in the Layer Activation Function
Input 256 Linear

Encoder 1 256 Sigmoid
Encoder 2 256 LeakyReLU

Embedded Layer 5 Linear
Decoder 1 256 LeakyReLU
Decoder 2 256 Sigmoid

Output 256 Linear

Table 2.1 Network structure for the Autoenocder NN with the embedded layer containing 5
layers.

where the the output of a neuron, yk is described by the following summation:

yk = σ(∑
i

wkixi +b) (2.3)

for the kth neuron in a layer where i = 1,2, ...,n where n is the number of neutrons in the

previous layer, and xi their corresponding outputs,

These comprise the parameters of the network that the training process looks to optimise.

Just as with feed-froward neural networks, the training process involves calculating the

gradients with respect to the parameters of the network via backpropogation, and using

gradient descent to update the parameters with the goal of minimising this error by finding

the optimal network parameters.

After exploration, discussed further in the appendix, the network structure of the Autoen-

coder is displayed in table 2.1. The network was trained using 216000 (256,1)-shaped vectors

which took place over 200 epochs, where 20% of the training data was held as validation

data, while the other 80% was used for training, leaving 1,000 timesteps for evaluation of the

network.

10 Methodology & Results

Fig. 2.2 Plot displaying the RMSE values over a validation set for different dimensions,
Dm, of the latent space, determined by the number of neurons in the embedded layer, as a
result of training the autoencoder. This was evaluated for when one of the jets was fixed in y
(orange), when no shift occurred (blue) and is compared to the results of PCA (green) where
the number of basis vectors was the same as the size of the embedded layer.

Fixing a Jet in Space

As can be seen in figure 1.1 the x-averaged positions of the jets vary in y. While this drifting

phenomena is of importance, this study decided to focus on the ability to encapsulate the

merging, splitting and relative movement of the jets with respect to one another, as it is

expected that the drifting was a result of the random forcing, similar to that of a random

walk. As a result, in order to further reduce the degrees of freedom for the autoenocder and

to reduce the complexity of the training task, the upper jet of the system was fixed to the

same position in y. This is a perfectly valid transformation to make as boundary conditions

in y (as well as x) are periodic, and thus this shift corresponds to a shift in the view of the

system without altering the system itself, with respect to a fixed time-step. The shift in y is

then stored, and reapplied to the output of the network to bring the jet system back to its

original position in y. An example figure of this can be found in the appendix, figure A.2.

2.1 Autoencoder 11

Fig. 2.3 Plot displaying the same information as figure 2.2, however it shows a subset of the
possible Dms, for clarity, again evaluated for when one of the jets was fixed in y (orange),
when no shift occurred (blue).

Results

Figure 2.2 shows that the mean RMSE over the validation set of data points for different

networks, containing a different number of dimensions for the reduced-order model. The

figure shows the results for the PCA method as well as the undercomplete autoencoder for the

cases where the generated data was unaltered, as well as when one of the jets was fixed in y.

It can be seen that both methods perform much better than the PCA method for any number

of Dm. Figure 2.3 shows the same data plotted against a subset of the possible Dms, zoomed

in for clarity. In the case where one of the jets was fixed, the network outperforms the case

where no shift took place for all DMs where DM>12, to an arbitrary precision. Initially, this

indicates that the stochastic process determining the translation of this fixed jet may require

an additional six dimensions to be encapsulated fully- however this was not explored further

in this study and posses an interesting question for further work.

In the case where one of the jets was fixed, there is a large change in the gradient of

the RMSE function at DM=5, and in the case where no shift took place, this large change

12 Methodology & Results

Fig. 2.4 The top plot shows the input data to the network, over all time steps of this test
example, the middle plot shows the reconstructed output from the autoencoder when the
number of neurons in the middle layer was 5, corresponding DM=6 as the network was
trained with one of the jets fixed in y. The bottom plot shows the RMSE taken as the difference
between the two plots.

in gradient takes place at DM=6. Following the conclusions made in [14], this drop on the

RMSE coincides with the true DM for the system. The reason for the increase in this DM for

the case where no-shift occurs is due to an additional piece of information being required for

the case where the shift takes place that corresponds to that shift value. This indicates that

the true DM of this system is DM=6, according to this method. Unlike [14], we do not have

the true value of DM to verify whether this prediction is correct.

In figures 2.4 and 2.5 we see the difference between the original data that is fed to the

network for inference and the outputs from the autoencoder, with the jets shifted back to

their original position in y, for the cases where the size of the embedded layer are 4 and 5,

corresponding to a full DM=5 and DM=6 respectively, when factoring the additional shift

information. Qualitatively figure 2.5, which used a network with 4 neurons in the embedded

layer (DM=5) is unable to reconstruct the nucleation and merging events as well as figure

2.1 Autoencoder 13

Fig. 2.5 The top plot shows the input data to the network, over all time steps of this test
example, the middle plot shows the reconstructed output from the autoencoder when the
number of neurons in the middle layer was 4, corresponding DM=5 as the network was
trained with one of the jets fixed in y. The bottom plot shows the RMSE taken as the difference
between the two plots.

2.4 which used a network with 6 neurons in the embedded layer (DM=6) and displays a

reasonably uniform error over the entire domain. This suggests that, in conjunction with the

RMSE curves in figure 2.3, that this the model containing this additional neuron is able to

better capture the dynamics of merging events, in particular at t ≈ 550 a merging event takes

place on with both jets, as well as overall an improved modelling of the entire domain, as

indicated by the difference plots. It must be noted that the decision to chose which precision

of errors are tolerable before considering the best fit with the smallest DM is very much

arbitrary, and this choice is being driven by the results of figure 2.3, however this does show

improvements in RMSE as DM increases and reconstruction plots with higher DMs can be

found in the appendices. However, this is expected to be expected, as shown in [14], and

the additional information being captured by higher DMs may, or may not be necessary for

determining time evolution of the state on this manifold.

14 Methodology & Results

Fig. 2.6 Plot displaying the RMSE values over a validation set for numbers of neurons in the
embedded states of the training data, as a result of training the FFNN to predict the future
state of the system. This was evaluated for when one of the jets was fixed.

2.2 Time Series Evolution

In order to see if the our latent representation of the system was able to capture the dynamics

of the system, another NN was used to try and learn the time evolution of the system on this

manifold. Initially this was conducted using a simple Feed-Forward Neural Network (FFNN)

and a Markovian approach- assuming that all the information required to make a prediction

of the state at time t +1 is contained within the state at time t, that is that h(t +1) = F(h(t))

where F is a function that represents the dynamic evolution of the system. Here the inputs

and corresponding targets for the network are the encoded representation of the system,

dependent on the chosen size of DM. For each evaluation all trajectories are evolved from

an initial given state of the system, in embedded space this is h(t = 0). The network then

generates the first prediction for state h(t = 1), which then becomes the input for the next

prediction. The network was trained using training data which was the embedded state of

the system for various DM, where the one of the jets was again fixed in y, and the RMSE

averaged over the validation dataset is show in figure 2.6. As can be seen, a similar change in

2.2 Time Series Evolution 15

Fig. 2.7 Plot a) on the left shows the data that the network was shown, centre-left the
prediction made by the FFNN predicting the future evolutions of the system. Centre-right
shows the truth data, obtained via numerical integration, that the network is being evaluated
against. On the right we see the RMSE between the two plots, where yellow indicated a
larger difference and purple a small difference. Plot b) Shows the temporal autocorrelation
curves for the truth data (blue) and the NN predictions (dashed red). The system predicts 20
time steps ahead from the initial state it was shown. In this plot the system is approaching a
merging event

gradient to figure 2.3 indicates that DM=6 (5 neurons in the embedded layer plus the shift

information) may be the true dimension of the internal manifold of the system, should it lie

on one.

While the Lyapunov time of the system is unknown due to the stochastic nature of the

system we can evaluate the performance of short-time tracking by calculating the temporal

autocorrelation, which can be defined as:

C(t) =
⟨u(0)u(t)⟩
⟨u(0)2⟩

. (2.4)

Figure 2.7b shows that the temporal autocorrelations between the data (blue) and the predicted

outputs (dashed red) do not match for any amount of time. Similarly the curves corresponding

to the data and the predicted outputs differ in shape considerably as well. The corresponding

figure 2.7a shows that the system state is near a merging event, while figure 2.8a indicates

16 Methodology & Results

Fig. 2.8 Plots a) and b) are of the same nature as figure 2.7, however the initial state shown
to the network is here a 2-jet system.

the system is in a 2-jet state, and figure 2.8b shows the temporal autocorrelations between

the data and the NN predictions again do not match. The NN predictions at each time step

differ from one previous step at near quadratic rate, while the data curves do not display a

smooth function, indicating strong influence from the stochastic forcing, even in regimes

where the system state does not appear to change. This smoothing from the NN is indicative

of a function that is not sufficiently complex to fit to the data- known as underfitting. This

can also be seen in figures 2.7a and 2.8a where the difference plots, on the left clearly show

that areas of discrepancy between the two plots are often between the two jets, where the NN

prediction smooths out these areas. Plots 2.7a and 2.8a show some promise that the network

has learned some of the dynamics, indicated by the drift of the bottom jet in 2.8a, however it

is clear that a more powerful network is required to encapsulate the complex dynamics of the

system.

A more suitable neural network architecture to make predictions on time series data is

the Long Short Term Memory Network (LSTM) [16]. A description regarding the nature of

LSTM networks can be found in the appendix. The nature of the LSTM allows for a series,

or training window, to be shown to the network, rather than the one previous time-step which

2.2 Time Series Evolution 17

Fig. 2.9 The plots are of the same nature as figure 2.7a, where in each set of plots on the
left shows the data that the network was shown (in this case 1 time step), centre-left the
prediction made by the FFNN predicting the future evolutions of the system. Centre-right
shows the truth data, obtained via numerical integration, that the network is being evaluated
against. On the right we see the RMSE between the two plots averaged for each time step. In
this case the network used was the LSTM where one time step was shown to the network. a)
Shows a 2-jet system and b) the system is approaching a merging event.

was used in the previous method. Again the LSTM model was trained on the embedded data

where one of the jets was fixed in y. The LSTMs were trained on data where the length of the

training data shown to the network were of 1 time step, as previously, as well as 5 time steps.

Figure 2.9 shows the different system states and the LSTM predictions for the network

that was trained on a single time step, while figure 2.10 displays this for where the network

was trained on a window of 5 time steps of data. Both figures show that the RMS error

jumps up immediately to a value of 0.3 after the first time step, before the errors saturate.

Contextually this error is an order of magnitude larger than the simple FFNN used for

time series prediction, see figure 2.6, and 3 orders of magnitude larger than the error of the

autoencoder in figure 2.1. These large errors produce predictions that are sufficiently different

to samples from the truth dataset used for training, that the time series predictor is unable to

make predictions for subsequent time steps resulting in the prediction of the 3 jet system for

18 Methodology & Results

Fig. 2.10 The plots are of the same in nature as figure 2.9 with the difference being that in
this case the LSTM was shown a window of 5 time steps.

each subsequent prediction, regardless of original state of the system. Another reason for

these poor predictions is that the predictions are too different from the distribution of training

samples for the decoder network to make accurate mappings. Various different widths and

depths of networks, as well as various training window lengths and training data with various

dimensions DM were used to try and improve the training of the network, however nothing

proved to be successful. If time permitted, further enquiry into improving this network would

have taken place, this is discussed further in the conclusion.

2.3 Predictability

The failure of the LSTM to effectively learn the dynamics of the system, opens up the

question of how predictable is this system- that is, how does the system respond to externally

induced changes in the conditions at a certain time t. Traditionally this would be done by

calculating the Lyapunov exponent of our system, that is rate of separation of infinitesimally

close trajectories in phase space [17], to determine the length of time before they diverge.

2.3 Predictability 19

Fig. 2.11 On the left the plot shows the mean flow averaged over the 5 runs, for 20 time steps.
On the right we see the mean difference between runs shown in the solid blue line, with the
standard deviation envelope shown in lighter blue. In this case, at time t = 0 the runs were
given a perturbation; all runs used the same realisation of the forcing, set by using the same
random seed.

However due to the stochastic forcing, this phase space representation to our model is

unknown. If looking at two runs with identical realisations of the forcing, one may be able to

compare the phase space trajectories of two nearby initial conditions and observe whether the

forcing were to push the trajectory into a different basin of the attractor. However, one would

not be able to compare such trajectories in phase-space for two different realisations of the

forcing, as the forcing very well may dictate the shape of the attractor, producing different

dynamical systems, where comparing trajectories would not be meaningful. [18]

As a result of this, understanding how the stochastic forcing influences the system must

be conducted in observed coordinate space. Here we use two different systematic changes

to alter the system. They are to either perturb the u field at time t, or to change the external

forcing at time t, and to observe how the system changes from time t+1 onward as a response

to either of these two changes.

The first method involves applying a small perturbation to the system while the realisation

of the forcing, set by a random seed, remains the same. 5 separate training runs are initialised

20 Methodology & Results

Fig. 2.12 These plots are of the same nature as figure 2.12, however they were initialised
with a different initial state.

with identical initial conditions and a random seed is used to ensure the forcing is consistent

across the runs. At time t a perturbation, of order 10−5, is made to the u field, with each run

given a different constant perturbation over all of the u field. This order of magnitude was

chosen as it was considered sufficiently small to constitute as an appropriate perturbation,

but also as this was the order of magnitude of the RMSE from the autoencoder, and would

provide a suitable scale to compare the effects of errors on predictability (the error in figure

2.3 shows RMSE of order 10−3, however this was calculated on normalised data, which is of

order 102 greater in magnitude).

Rather than comparing two trajectories, an ensemble containing five runs results in sum

of differences being less sensitive to noise produced by the stochastic forcing. Within our set

of five runs, each run was compared to the four others, with the mean of the differences then

produced, as well as the standard deviation from the mean. We will describe the divergence

of trajectories as the error as these were again computed using the RMSE. These divergence

plots can be seen in figure 2.13 where the errors grow exponentially, note the logarithmic

axis, which is how a deterministic chaotic system would be expected to evolve, where the

divergence would be characterised by a Lyapunov exponent. Here all the runs in the ensemble

2.3 Predictability 21

Fig. 2.13 These plots are of the same nature as figure 2.12 and 2.13, however they were
initialised with a different initial state, where a merging event is approaching.

share the same realisation of the forcing, meaning that this can be neglected when comparing

their trajectories, and the comparisons between runs are similar to that of a system without

turbulence. Each of figures 2.11, 2.12 2.13, show very similar divergence curves, despite

being in very different states that we may define, with figures 2.11 and 2.12 in reasonably

stable 3-jet configurations, while figure 2.13 is close to a merging event, again confirming

the lack of turbulence without the effects of the forcing.

In order to understand how the forcing on the affects the system, similar to the perturbation

of the u-field, a comparison between five runs was made, where the stochastic forcing was

reinitialised with a new random seed. Here the error, as can be seen in figures 2.14 and

2.15, the errors grow, with accordance to a square law, immediately after the perturbation is

made. This square error is typical of that of Brownian motion. This may explain as to why

the neural network could not correctly predict future evolution’s accurately- it was unable

to correctly model the forcing that drives the system. If given a state of the system, there

are several different evolutions that are possible and this is completely dependent on the

forcing. The prediction that the model produces, very well may be considered correct under a

22 Methodology & Results

Fig. 2.14 On the left the plot shows the mean flow averaged over the 5 runs, for 20 time
steps. On the right we see the mean difference between runs shown in the solid blue line,
with the standard deviation envelope shown in lighter blue. In this case, at time t = 0 the
runs were initialised with a different random forcing, all other initial conditions remained
the same. The green dashed line shows the gradient, determined via regression to represent
the diffusion rate, characterised by the diffusion constant. The red dashed line corresponds
to the predicted gradient, characterised by the diffusion constant, predicted by the FFNN.

different realisation of the forcing, however, it does not match the data being used for testing,

and thus is shown to perform poorly as a result.

This posses the question of how does the forcing shape the system. Once again there are

the two possibilities- that the system distorts the phase-space of the system sufficiently that

two different realisations of the forcing produce two different dynamical systems, or that the

forcing is significant enough to shift the trajectory to a different regime of the system, an

example of this being a significant enough forcing to excite a trajectory out of the well of an

attractor. In order to determine this, we looked at whether changing the forcing while the

system is in different possible states would change the rate diffusion of trajectories.

One would expect that if the system was in a stable state, such as a long-term three-jet

state, as seen in figure 2.14, a perturbation may not be sufficient to shift the system to a new

state. If this were the case, it would indicate that the forcing shifted trajectories to different

states as opposed to fundamentally shaping the system topology. Following on from this, one

would expect a system that was in a more unstable state, that being a jet that is close to a

2.3 Predictability 23

Fig. 2.15 On the left the plot shows the mean flow averaged over the 5 runs, for 20 time
steps, for a difffernt initial state than that in figure 2.14. On the right we see the mean
difference between runs shown in the solid blue line, with the standard deviation envelope
shown in lighter blue. In this case, at time t = 0 the runs were initialised with a different
random forcing, all other initial conditions remained the same. The green dashed line shows
the gradient, determined via regression to represent the diffusion rate, characterised by the
diffusion constant. The red dashed line corresponds to the predicted gradient, characterised
by the diffusion constant, predicted by the FFNN. The blue dashed lines corresponding
the the upper and lower bounds of gradients within the training set and are only shown to
contextualise the green and red lines.

merging or nucleating event, such as figure 2.15 where a merging event is about to take place,

to be more liable to be significantly influenced by the forcing, and as a result the different

trajectories would diverge from each other at a greater rate.

In order to quantify this, the diffusion constant, defined as α , which is the coefficient

of the mean exponential divergence curve approximated using a regression, expresses how

quickly trajectories diverge from one another and as a result we use this to describe how

stable or unstable the system was at that state. In order to see if the value diffusion constant is

a result of the system state, a simple NN was trained to perform a regression task of predicting

the diffusion constants given the embedded state at time t = 0 where this is defined as the

time in which the change in forcing was applied. The NN was a simple FFNN, that attempted

to predict this value given one time step of the embedded state. The performance of the

network, however was poor. In the case where the state of the flow was stable, which is the

most common state type, as shown in figure 1.1, the network is able to accurately predict the

24 Methodology & Results

diffusion constant, as seen by the matching gradients in figure 2.14. However in 2.15, where

a merging event takes place, the network is unable to correctly predict the diffusion constant,

and selects a value close to the mean. Once again, if time permitted, further exploration

of this would have taken place, both looking to optimise the network training process, but

also to probe at the fundamental predictability of this constant, which in turn describes the

predictability of the system.

Chapter 3

Conclusion

In this project, an autoencoder was used encapsulate a stochastically forced system using a

reduced order model that mapped the system onto an internal manifold. While the attempt

to also encapsulate the dynamics of the system using a neural network did not prove to be

successful, it did open up a number of questions regarding the variability of a stochastically

driven system and questions. These questions include understanding the influence of the

forcing on the system as a function the state that the system is in, and whether this function

could be represented by a neural network, as well as the question of whether the system

displays any predictability, or whether accurate predictions cannot be made due to the

stochastic nature of the system.

Going forward there are several areas of this project that can be explored in much greater

depth. Further model exploration as well as the use of other novel techniques, such as echo-

state networks [19] may prove far more effective at encapsulating the time-evolution of the

system that lies on the internal manifold. When looking at the variability of the system, one

could probe the underlying structure of the system’s attractor to understand more thoroughly

how the forcing shapes the topology of this structure. As well as this, further exploration

of the regression task, looking to predict the diffusivity of the trajectories when exposed to

different realisations of the forcing, may provide very interesting insights into the influence

26 Conclusion

of the forcing on the system as well as how stable and predictable the system is in certain

states. A clustering task could look to try and group certain states based on learned features,

using the embedded representation of the model to attempt to uncover information regarding

the latent variables that describe the encoded system. This coupled with further work on the

interpretability of the encoded layer would lead to a more robust and explainable machine

learning system, as opposed to the black box that these systems can often be seen as.

This project looked to provide the grounding for further exploration into the application

of data-driven techniques to better understand weather and climate models, as well looking

to encapsulate their behaviour to make accurate predictions at a fraction of the integration

cost. Should a model achieve this, it could provide parameterisation schemes for many other

phenomena that take place on the sub-grid scales, providing, potentially, both more accurate

parameterisations, that may lead to more accurate forecasts, as well as reducing the time to

run these GCMs- both outcomes that could significantly improve climate science and weather

forecasting. This project also looked at probing a system driven by a stochastic forcing, and

with many systems using such to represent parameterised phenomena, understanding better

how the forcing shapes these systems, would allow for a more accurate description of the

governing dynamics of these systems.

References

[1] Hossein Hassani, Xu Huang, and Emmanuel Silva. Big data and climate change. Big
Data and Cognitive Computing, 3(1), 2019.

[2] MacCracken M. C. Grotch, S. L. The use of general circulation models to predict
regional climatic change. Journal of Climatet, 4, 1991.

[3] Huize Wang and Robin Wordsworth. Extremely long convergence times in a 3d GCM
simulation of the sub-neptune gliese 1214b. The Astrophysical Journal, 891(1):7, feb
2020.

[4] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,
61:85–117, Jan 2015.

[5] E. N. Lorenz. Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 20,
1963.

[6] Cope. L. The dynamics of geophysical and astrophysical turbulence. Thesis, DAMTP,
University of Cambridge. 2021.

[7] Frank B. Lipps. A note on the beta-plane approximation. Tellus, 1964.

[8] Rintoul S. R. Sokolov, S. Multiple jets of the antarctic circumpolar current south of
australia. Journal of Physical Oceanography, 37, 2007.

[9] Tim Woollings, Abdel Hannachi, and Brian Hoskins. Variability of the north at-
lantic eddy-driven jet stream. Quarterly Journal of the Royal Meteorological Society,
136(649):856–868, 2010.

[10] James M. Hyman and Basil Nicolaenko. The kuramoto-sivashinsky equation: A bridge
between pde’s and dynamical systems. Physica D: Nonlinear Phenomena, 18(1):113–
126, 1986.

[11] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Internal Representations
by Error Propagation, page 318–362. MIT Press, Cambridge, MA, USA, 1986.

[12] Jacob Page, Michael P. Brenner, and Rich R. Kerswell. Revealing the state space of
turbulence using machine learning. Phys. Rev. Fluids, 6:034402, Mar 2021.

[13] Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equa-
tions from data by sparse identification of nonlinear dynamical systems. Proceedings
of the National Academy of Sciences, 113(15):3932–3937, 2016.

28 References

[14] Alec J. Linot and Michael D. Graham. Deep learning to discover and predict dynamics
on an inertial manifold. Physical Review E, 101(6), Jun 2020.

[15] Hieu Mac, Dung Truong, Lam Nguyen, Hoa Nguyen, Hai Anh Tran, and Duc Tran.
Detecting attacks on web applications using autoencoder. In Proceedings of the Ninth
International Symposium on Information and Communication Technology, SoICT 2018,
page 416–421, New York, NY, USA, 2018. Association for Computing Machinery.

[16] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735–1780, November 1997.

[17] Alan Wolf, Jack B. Swift, Harry L. Swinney, and John A. Vastano. Determining
lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, 16(3):285–
317, 1985.

[18] Tanguy Laffargue, Julien Tailleur, and Frédéric van Wijland. Lyapunov exponents of
stochastic systems—from micro to macro. Journal of Statistical Mechanics: Theory
and Experiment, 2016(3), Mar 2016.

[19] Jaideep Pathak, Brian Hunt, Michelle Girvan, Zhixin Lu, and Edward Ott. Model-free
prediction of large spatiotemporally chaotic systems from data: A reservoir computing
approach. Phys. Rev. Lett., 120:024102, Jan 2018.

[20] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[21] The Mathworks, Inc., Natick, Massachusetts. MATLAB version 9.3.0.713579 (R2017b),
2017.

[22] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization
of machine learning algorithms, 2012.

[23] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

[24] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. J.
Mach. Learn. Res., 15(1):1929–1958, January 2014.

[25] Sajid A. Marhon, Christopher J. F. Cameron, and Stefan C. Kremer. Recurrent Neural
Networks, pages 29–65. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

Appendix A

A.1 Autoencoder

The following information was not included in the main body of the text as it was considered

information that did no hinder one’s ability to interpret the results of the study, however they

may be useful for those looking to understand the structure of the models used.

All of the Deep Learning models were built using the tensor flow framework [20]. The

training data was generated using MATLAB [21], using a set of scripts written by Laura

Cope for their thesis [6].

The hyperparameters of a NN are those that describe the structure of the network, these

include the activation functions at each layer, the number of neurons in each layer and the

gradient descent learning rate. The hyperparameters in model were chosen by the method of

Bayesian Hyperparameter Optimisation [22]. As the encoder and the decoder are inverse

mappings of each other, the hyperparameter search was constrained to so that the encoder

and decoder structures mirrored each other. The method of Bayesian Hyperparameter

Optimisation was chosen due to its performance over other methods such as Grid Search or

Random search algorithms. The goal of Hyperparameter optimisation is to find the optimal

model structure that performs best when applied to a validation set, with the best performance

being classified as the lowest value of the objective loss function, in this case that is the

RMSE. Due to the computational cost of training, determining the best though searching

30

Fig. A.1 Plot displaying training loss (red) and the validation loss(green) where this loss is
RMSE for the training of the Autoencoder with an embedding layer of size 5, and one of the
jets was fixed in y to corresponding to DM=6.

is inefficient often impractical. The optimiser used was the Adam [23], which is uses an

adaptive learning rate to converge on the optimal values, with the defined learning rate being

the initial rate before the Adam optimiser determines the optimal learning rate for the position

on the gradient surface.

The exception to this was the depth of the network, the choice for this was made by

completing this process for each of the various options: 3, 5 and 7 hidden layers. Significant

improvements in the RMSE were found when increasing the depth of the network from 3

hidden layers to 5, however that there is no significant reduction in RMSE when increasing

the depth of the network from 5 to 7 hidden layers. The smaller network of 7 layers was

chosen due to it’s faster training time due to a smaller number of trainable parameters. The

number of trainable parameters for this network is 200,197 when the embedded layer is of

size 6.

A.2 Feed Forward Neural Network for Time Evolution 31

Fig. A.2 Figure showing the time-latitude plot of the system where one jet has been fixed in
y, using the periodic boundary conditions of the domain to do so by shifting the jet in with
respect to its postion in the previous time step.

A.2 Feed Forward Neural Network for Time Evolution

The network used to try and learn the dynamics on the internal manifold is a Feed Forward

Neural Network (FFNN). Bayesian Hyperparameter Optimisation was once again used to

determine the optimal number of neurons in each layer, the number of layers, the activation

functions and the learning rate, the values of which are in table 2.1. In order to prevent

outfitting from taking place, a dropout method was applied to each layer [24]. This involves

ignoring a random sub-sample of the neurons during the training pass, in this case the

proportion of neurons turned off in each layer was 40%. The reason for this is to prevent

the network from learning predominantly along one particular path in the network, and as a

result performing poorly on unseen data. the optimal parameters, as determined by hyper

parameter optimisation, are shown in table A.2The number of trainable parameters for this

network is 17,349.

A.3 LSTM

LSTMs are a form of recurrent neural network (RNN) [25], these are a group of architectures,

that are able to use outputs from previous states as the inputs for the proceeding state, and

thus are suitable to data in sequential form and thus time-series data. Used widely for tasks

32

Layer Number of Neurons in the Layer Activation Function
Input 5 Linear

Dense Layer 1 (Dropout) 64 (0.4) Tanh
Dense Layer 2 (Dropout) 64 (0.4) Tanh
Dense Layer 3 (Dropout) 64 (0.4) Tanh
Dense Layer 4 (Dropout) 64 (0.4) Tanh
Dense Layer 5 (Dropout) 64 (0.4) Tanh
Dense Layer 6 (Dropout) 64 (0.4) Tanh

Output 5 Sigmoid

Table A.1 Network structure for the FFNN for time evolution prediction with a an input
containing the initial state embedded into a vector of size 5.

such as speech recognition, the powerful feature that RNNs posses to retain some contextual

information when looking to make a prediction on an input. By storing information about the

previous states in the time series, the network is able to make an informed prediction with

respect to the most current input from the series. They can be distinguished from traditional

feed-forward networks (FFNN) by their inclusion of feedback loops which provide the next

computation to be made with the outputs from previous states, giving the network a form

of memory, or context in which to make a decision. If one was to unfold the network to

visualise the flow of data, these loops would represent the connections between each cell

of the network that repeats itself. Each cell receives the corresponding input vector and

information from previous cells.

The weights of the network are still evaluated through the process of back propagation.

The LSTM is a popular variant of RNNs, in which each cell of the LSTM network containing

state cells and gating mechanisms to regulate the flow of information, retaining or forget

information from these past outputs. Here the training data can be fed to the network in the

form of a sequence, as opposed to a single vector which was the case using the previous

networks. The structure of the model con trained two LSTM cells as was determined via

hyperparameter optimisation; the first with 128 hidden states and the second 64 hidden states.

A.4 Diffusion Prediction Neural Network 33

Layer Number of Neurons in the Layer Activation Function
Input 5 Linear

Dense Layer 1 (Dropout) 64 (0.4) ReLU
Dense Layer 2 (Dropout) 64 (0.4) ReLU
Dense Layer 3 (Dropout) 64 (0.4) ReLU
Dense Layer 4 (Dropout) 64 (0.4) ReLU
Dense Layer 5 (Dropout) 64 (0.4) ReLU
Dense Layer 6 (Dropout) 64 (0.4) ReLU
Dense Layer 7 (Dropout) 64 (0.4) ReLU

Output 5 Sigmoid

Table A.2 Network structure for the FFNN for predicting the diffusion rate with a an input
containing the initial state embedded into a vector of size 5.

The number of trainable parameters in the network when the embedded inputs are of shape 5

is 51,269.

A.4 Diffusion Prediction Neural Network

The network used for predicting the diffusion constant, when different realisations of the

forcing were used on runs with identical initial conditions was also a simple feed forward

network. Following hyper parameter optimisation, the optimal structure of the network was

determined as can be seen in A.2. The number of trainable parameters in the network is

17,195.

As was seen in the main body of the report, the model was not successful when looking

to predict these values. When using a different dimension for the DM of the training data,

it can be seen in figure A.6 that the training performance was not affected by the size of

the training data vectors. This is unusual and not expected and further work would look to

understand if this is caused by a flaw in the network, or a fundamental lack of predictability

regarding this diffusion constant.

34

Fig. A.3 The top plot shows the input data to the network, over all time steps of this test
example, the middle plot shows the reconstructed output from the autoencoder when the
number of neurons in the middle layer was 2, corresponding DM=3 as the network was
trained with one of the jets fixed in y. The bottom plot shows the RMSE taken as the difference
between the two plots.

A.4 Diffusion Prediction Neural Network 35

Fig. A.4 The top plot shows the input data to the network, over all time steps of this test
example, the middle plot shows the reconstructed output from the autoencoder when the
number of neurons in the middle layer was 6, corresponding DM=7 as the network was
trained with one of the jets fixed in y. The bottom plot shows the RMSE taken as the difference
between the two plots.

36

Fig. A.5 Plot training loss (red) and the validation loss(green) where this loss is RMSE where
the LSTM which was shown a window of 5 time steps, with the training data being embedded
with size 5, and one of the jets was fixed in y to correpsonding to DM=6.

Fig. A.6 Plot displaying the RMSE values over a validation set for different dimensions, Dm,
of the latent space, determined by the number of neurons in the embedded layer, as a result
of training the FFNN to predict the diffusion rate, where the forcing was altered between
runs. This was evaluated for when one of the jets was fixed in y.

A.4 Diffusion Prediction Neural Network 37

Fig. A.7 On the left the plot shows the mean flow averaged over the 5 runs, for 20 time steps.
On the right we see the mean difference between runs shown in the solid blue line, with
the standard deviation envelope shown in lighter blue. In this case, at time t = 0 the runs
were initialised with a different random forcing, all other initial conditions remained the
same. The green dashed line shows the gradient, determined via regression to represent the
diffusion rate, characterised by the diffusion constant. The different runs that make up the
averages in this figure have been set off with different realisations of the forcing. The initial
state for these runs is that of a long-run stable 2-jet.

Fig. A.8 On the left the plot shows the mean flow averaged over the 5 runs, for 20 time steps.
On the right we see the mean difference between runs shown in the solid blue line, with
the standard deviation envelope shown in lighter blue. In this case, at time t = 0 the runs
were initialised with a different random forcing, all other initial conditions remained the
same. The green dashed line shows the gradient, determined via regression to represent the
diffusion rate, characterised by the diffusion constant. The different runs that make up the
averages in this figure have been set off with different realisations of the forcing. The initial
state for these runs is that of a long-run stable 3-jet.

38

Fig. A.9 On the left the plot shows the mean flow averaged over the 5 runs, for 20 time steps.
On the right we see the mean difference between runs shown in the solid blue line, with
the standard deviation envelope shown in lighter blue. In this case, at time t = 0 the runs
were initialised with a different random forcing, all other initial conditions remained the
same. The green dashed line shows the gradient, determined via regression to represent the
diffusion rate, characterised by the diffusion constant. The different runs that make up the
averages in this figure have been set off with different realisations of the forcing. The initial
state for these runs is where the system is approaching a merging event .

	Table of contents
	1 Introduction
	1.1 Machine Learning for Climate Science
	1.2 Mid-latitude Idealised Model
	1.3 Manifold Learning

	2 Methodology & Results
	2.1 Autoencoder
	2.2 Time Series Evolution
	2.3 Predictability

	3 Conclusion
	References
	Appendix A
	A.1 Autoencoder
	A.2 Feed Forward Neural Network for Time Evolution
	A.3 LSTM
	A.4 Diffusion Prediction Neural Network

